Answer:
See proof below
Step-by-step explanation:
An equivalence relation R satisfies
- Reflexivity: for all x on the underlying set in which R is defined, (x,x)∈R, or xRx.
- Symmetry: For all x,y, if xRy then yRx.
- Transitivity: For all x,y,z, If xRy and yRz then xRz.
Let's check these properties: Let x,y,z be bit strings of length three or more
The first 3 bits of x are, of course, the same 3 bits of x, hence xRx.
If xRy, then then the 1st, 2nd and 3rd bits of x are the 1st, 2nd and 3rd bits of y respectively. Then y agrees with x on its first third bits (by symmetry of equality), hence yRx.
If xRy and yRz, x agrees with y on its first 3 bits and y agrees with z in its first 3 bits. Therefore x agrees with z in its first 3 bits (by transitivity of equality), hence xRz.
F(x) = -3x - 2
f(-5) = -3(-5) -2 = 15 - 2 = 13
Answer: 2z+4/y+7
Step-by-step explanation:
We are trying to solve for x
7x-2z=4-xy
Add xy to both sides:
7x-2z+xy=-xy+4+xy= xy+7x-2z=4
Then you add 2z to both sides:
xy+7x-2z+2z=4+2z
xy+7x=2z+4
Then you factor out variable x
x(y+7)=2z+4
You divide both sides by y+7
x(y+7)/y+7= 2z+4/y+7
Which we would get x=2z+4/y+7
Answer:
2x - 10 = 10 - 3x
Simplifying
2x + -10 = 10 + -3x
Reorder the terms:
-10 + 2x = 10 + -3x
Solving
-10 + 2x = 10 + -3x
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '3x' to each side of the equation.
-10 + 2x + 3x = 10 + -3x + 3x
Combine like terms: 2x + 3x = 5x
-10 + 5x = 10 + -3x + 3x
Combine like terms: -3x + 3x = 0
-10 + 5x = 10 + 0
-10 + 5x = 10
Add '10' to each side of the equation.
-10 + 10 + 5x = 10 + 10
Combine like terms: -10 + 10 = 0
0 + 5x = 10 + 10
5x = 10 + 10
Combine like terms: 10 + 10 = 20
5x = 20
Divide each side by '5'.
x = 4
Simplifying
x = 4