Answer:
D. x ≥ -10
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtract Property of Equality
Step-by-step explanation:
<u>Step 1: Define</u>
10 - 4x ≤ 50
<u>Step 2: Solve for </u><em><u>x</u></em>
- Subtract 10 on both sides: -4x ≤ 40
- Divide -4 on both sides: x ≥ -10
Here we see that any value <em>x</em> greater than or equal to -10 would be a solution to the inequality.
Answer:
15%
Step-by-step explanation:
Percent is (usually) out of 100. So since the unit is already 100 you can just look at how much she did lose. (^-^)
Answer:
90°
Step-by-step explanation:
Since they are vertical angles, they equal eachother
4x+15=5x-5
add the 5 to both sides
4x+19=5x
subtract the 4x from both sides
x=19
Then you have to plug in 19 to find the measure of ZA
4(19)+14
76+14
90
Complete Question
The complete question is shown on the first uploaded image
Answer:
a
![g(h(x)) = \sqrt[4]{x^2 + x +5} + 3](https://tex.z-dn.net/?f=g%28h%28x%29%29%20%3D%20%5Csqrt%5B4%5D%7Bx%5E2%20%2B%20x%20%2B5%7D%20%2B%203)
b
![h(g(x)) = \sqrt{x} + 7\sqrt[4]{x} + 17](https://tex.z-dn.net/?f=h%28g%28x%29%29%20%20%3D%20%5Csqrt%7Bx%7D%20%20%2B%207%5Csqrt%5B4%5D%7Bx%7D%20%2B%2017)
c
![h(h(x)) = [x^2 + x + 5 ]^2 + x^2 + x + 10](https://tex.z-dn.net/?f=h%28h%28x%29%29%20%3D%20%20%5Bx%5E2%20%2B%20x%20%2B%205%20%5D%5E2%20%2B%20x%5E2%20%2B%20x%20%2B%2010)
Step-by-step explanation:
From the question we are told that

and
![g(x) = \sqrt[4]{x} + 3](https://tex.z-dn.net/?f=g%28x%29%20%3D%20%5Csqrt%5B4%5D%7Bx%7D%20%2B%203)
Considering first question
Now we are told g(h(x))
i.e
![g(h(x)) = [x^2 + x + 5 ]^{\frac{1}{4} } + 3](https://tex.z-dn.net/?f=g%28h%28x%29%29%20%3D%20%20%5Bx%5E2%20%2B%20x%20%2B%205%20%5D%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%20%2B%203)
=> ![g(h(x)) = \sqrt[4]{x^2 + x +5} + 3](https://tex.z-dn.net/?f=g%28h%28x%29%29%20%3D%20%5Csqrt%5B4%5D%7Bx%5E2%20%2B%20x%20%2B5%7D%20%2B%203)
Considering second question
Now we are told h(g(x))
i.e
![h(g(x)) = [x^{\frac{1}{4} } + 3]^2 + x^{\frac{1}{4} } + 3 + 5](https://tex.z-dn.net/?f=h%28g%28x%29%29%20%3D%20%20%5Bx%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%20%2B%203%5D%5E2%20%2B%20%20x%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%20%2B%203%20%2B%205)
=> 
=> 
=> ![h(g(x)) = \sqrt{x} + 7\sqrt[4]{x} + 17](https://tex.z-dn.net/?f=h%28g%28x%29%29%20%20%3D%20%5Csqrt%7Bx%7D%20%20%2B%207%5Csqrt%5B4%5D%7Bx%7D%20%2B%2017)
Considering third question
![h(h(x))= [x^2 + x + 5]^2 + [x^2 + x + 5 ] + 5](https://tex.z-dn.net/?f=h%28h%28x%29%29%3D%20%5Bx%5E2%20%2B%20x%20%2B%205%5D%5E2%20%2B%20%5Bx%5E2%20%2B%20x%20%2B%205%20%5D%20%2B%20%205)
=> ![h(h(x)) = [x^2 + x + 5 ]^2 + x^2 + x + 10](https://tex.z-dn.net/?f=h%28h%28x%29%29%20%3D%20%20%5Bx%5E2%20%2B%20x%20%2B%205%20%5D%5E2%20%2B%20x%5E2%20%2B%20x%20%2B%2010)