<h3>
Answer: Choice B</h3>
Explanation:
Cosine is positive in quadrants I and IV, but quadrant IV isn't shaded in so we can rule out choice A.
Sine is positive in quadrants I and II. So far it looks like choice B could work. In fact, it's the answer because sin(pi/6) = 1/2 and sin(5pi/6) = 1/2. So if 0 ≤ sin(x) < 1/2, then we'd shade the region between theta = 0 and theta = pi/6; as well as the region from theta = 5pi/6 to theta = pi.
Choice C is ruled out because tangent is positive in quadrants I and III, but quadrant III isn't shaded.
Choice D is ruled out for similar reasoning as choice A. Recall that 
Answer:
a) 5/-6, - 5/6
b) 7/-2, -7/2
Step-by-step explanation:
Here is one way to solve for x.
Step 1) 2x^2-7=9
Step 2) 2x^2-7+7=9+7
Step 3) 2x^2=16
Step 4) (2x^2)/2=16/2
Step 5) x^2=8
Step 6) sqrt(x^2)=sqrt(8)
Step 7) |x|=sqrt(8)
Step 8) x=sqrt(8) or x=-sqrt(8)
-------------------------------------
Below are explanations/reasons to each of the steps above.
Step 1) Original equation
Step 2) Add 7 to both sides
Step 3) Combine like terms
Step 4) Divide both sides by 2
Step 5) Simplify
Step 6) Apply the square root to both sides. The notation "sqrt" is shorthand for "square root"
Step 7) Use the rule that sqrt(x^2) = |x| for all real numbers x
Step 8) Use the rule that if |x| = k then x = k or x = -k for some fixed number k.
-------------------------------------
The two solutions are
x = sqrt(8) or x = -sqrt(8)
Answer:
Step-by-step explanation:
At first,
Let start writing the squares of number 0 to 10,
0²=0
1²=1
2²=4
3²=9
4²=16
5²=25
6²=36
7²=49
8²=64
9²=81
10²=100
Now,
According to your question,
- The two numbers should be square numbers
- They should be greater than 1.
- Their sum should be 100.
Hence, your given conditions matches with the numbers 64 and 36.
Therefore, the numbers are 64 and 36.
- 64 and 36 are greater than 1.
- 64 is a square of 8 and 36 is the square of 6.
- 64+36=100