There is a mathematical formula which relates these quantities, given by:

Using this, we have:
<span>

</span>
 
        
        
        
Answer:
One angle is 46° and the other angle is 44°
Step-by-step explanation:
Complementary angle means the angles add up to 90 so:
90 - 44 = 46
 
        
             
        
        
        
You are supposed to answer where the function, h(x), is decreasing. In other words, where is “y” decreasing.
In this graph, I believe it would be from (-3,4)U(8,infinity). I hope this helps.
        
             
        
        
        
Answer:

Step-by-step explanation:
<u>Step 1:  Set the second equation into the first
</u>




<u>Step 2:  Solve the second equation
</u>


Answer:  
 
        
                    
             
        
        
        
Check the picture below, so, that'd be the square inscribed in the circle.
so... hmm the diagonals for the square are the diameter of the circle, and keep in mind that the radius of a circle is half the diameter, so let's find the diameter.
![\bf \textit{distance between 2 points}\\ \quad \\
\begin{array}{lllll}
&x_1&y_1&x_2&y_2\\
%  (a,b)
&({{ -2}}\quad ,&{{ 5}})\quad 
%  (c,d)
&({{ -8}}\quad ,&{{ -3}})
\end{array}\qquad 
%  distance value
d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}
\\\\\\
\stackrel{diameter}{d}=\sqrt{[-8-(-2)]^2+[-3-5]^2}
\\\\\\
d=\sqrt{(-8+2)^2+(-3-5)^2}\implies d=\sqrt{(-6)^2+(-8)^2}
\\\\\\
d=\sqrt{36+64}\implies d=\sqrt{100}\implies d=10](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Blllll%7D%0A%26x_1%26y_1%26x_2%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26%28%7B%7B%20-2%7D%7D%5Cquad%20%2C%26%7B%7B%205%7D%7D%29%5Cquad%20%0A%25%20%20%28c%2Cd%29%0A%26%28%7B%7B%20-8%7D%7D%5Cquad%20%2C%26%7B%7B%20-3%7D%7D%29%0A%5Cend%7Barray%7D%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%7B%7B%20x_2%7D%7D-%7B%7B%20x_1%7D%7D%29%5E2%20%2B%20%28%7B%7B%20y_2%7D%7D-%7B%7B%20y_1%7D%7D%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Cstackrel%7Bdiameter%7D%7Bd%7D%3D%5Csqrt%7B%5B-8-%28-2%29%5D%5E2%2B%5B-3-5%5D%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B%28-8%2B2%29%5E2%2B%28-3-5%29%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%28-6%29%5E2%2B%28-8%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B36%2B64%7D%5Cimplies%20d%3D%5Csqrt%7B100%7D%5Cimplies%20d%3D10)
that means the radius r = 5.
now, what's the center?  well, the Midpoint of the diagonals, is really the center of the circle, let's check,

so, now we know the center coordinates and the radius, let's plug them in,
![\bf \textit{equation of a circle}\\\\ 
(x-{{ h}})^2+(y-{{ k}})^2={{ r}}^2
\qquad 
\begin{array}{lllll}
center\ (&{{ h}},&{{ k}})\qquad 
radius=&{{ r}}\\
&-5&1&5
\end{array}
\\\\\\\
[x-(-5)]^2-[y-1]^2=5^2\implies (x+5)^2-(y-1)^2=25](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bequation%20of%20a%20circle%7D%5C%5C%5C%5C%20%0A%28x-%7B%7B%20h%7D%7D%29%5E2%2B%28y-%7B%7B%20k%7D%7D%29%5E2%3D%7B%7B%20r%7D%7D%5E2%0A%5Cqquad%20%0A%5Cbegin%7Barray%7D%7Blllll%7D%0Acenter%5C%20%28%26%7B%7B%20h%7D%7D%2C%26%7B%7B%20k%7D%7D%29%5Cqquad%20%0Aradius%3D%26%7B%7B%20r%7D%7D%5C%5C%0A%26-5%261%265%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5C%5C%5C%0A%5Bx-%28-5%29%5D%5E2-%5By-1%5D%5E2%3D5%5E2%5Cimplies%20%28x%2B5%29%5E2-%28y-1%29%5E2%3D25)