Notice that
<em>B</em> = 4<em>i</em> + 6<em>j</em> - 2<em>k</em> = 2 (2<em>i</em> + 3<em>j</em> - <em>k</em>) = 2<em>A</em>
so both vectors point in the same direction and the angle between them is (A) 0°.
Answer:
the maximum intensity of an electromagnetic wave at the given frequency is 45 kW/m²
Explanation:
Given the data in the question;
To determine the maximum intensity of an electromagnetic wave, we use the formula;
=
ε₀cE
²
where ε₀ is permittivity of free space ( 8.85 × 10⁻¹² C²/N.m² )
c is the speed of light ( 3 × 10⁸ m/s )
E
is the maximum magnitude of the electric field
first we calculate the maximum magnitude of the electric field ( E
)
E
= 350/f kV/m
given that frequency of 60 Hz, we substitute
E
= 350/60 kV/m
E
= 5.83333 kV/m
E
= 5.83333 kV/m × (
)
E
= 5833.33 N/C
so we substitute all our values into the formula for intensity of an electromagnetic wave;
=
ε₀cE
²
=
× ( 8.85 × 10⁻¹² C²/N.m² ) × ( 3 × 10⁸ m/s ) × ( 5833.33 N/C )²
= 45 × 10³ W/m²
= 45 × 10³ W/m² × (
)
= 45 kW/m²
Therefore, the maximum intensity of an electromagnetic wave at the given frequency is 45 kW/m²
Answer:
10.337m/s2
Explanation:
F=ma
a=F/m
a = 92 / 8.9 = 10.337m/s2
Answer:
The weight of the sky diver contributes to the force pushing him down.
Explanation: