<span>Dawn was at 6 am.
Variables
a = distance from a to passing point
b = distance from b to passing point
c = speed of hiker 1
d = speed of hiker 2
x = number of hours prior to noon when dawn is
The first hiker travels for x hours to cover distance a, and the 2nd hiker then takes 9 hours to cover that same distance. This can be expressed as
a = cx = 9d
cx = 9d
x = 9d/c
The second hiker travels for x hours to cover distance b, and the 1st hiker then takes 4 hours to cover than same distance. Expressed as
b = dx = 4c
dx = 4c
x = 4c/d
We now have two expressions for x, set them equal to each other.
9d/c = 4c/d
Multiply both sides by d
9d^2/c = 4c
Divide both sides by c
9d^2/c^2 = 4
Interesting... Both sides are exact squares. Take the square root of both sides
3d/c = 2
d/c = 2/3
We now know the ratio of the speeds of the two hikers. Let's see what X is now.
x = 9d/c = 9*2/3 = 18/3 = 6
x = 4c/d = 4*3/2 = 12/2 = 6
Both expressions for x, claim x to be 6 hours. And 6 hours prior to noon is 6am.
We don't know the actual speeds of the two hikers, nor how far they actually walked. But we do know their relative speeds. And that's enough to figure out when dawn was.</span>
Answer:
=1
Step-by-step explanation:
2(9)-(2)=8
18-2=8
9=8
9-8
=1
Im pretty sure this is the answer
Sin(θ - 180)
sin(θ)cos(180) - cos(θ)sin(180)
sin(θ)[-1] - cos(θ)[0]
-sin(θ) - 0
-sin(θ)
Answer:
520 feet
Step-by-step explanation:
The easiest way to visualize this problem is to sketch a quick diagram.
For this problem, you are given an angle and the length of the side of a triangle. If you look at the diagram, you'll see that the length given is the opposite side of the angle given. For this situation, that means you will use the sine function (refer to SOH-CAH-TOA acronym). Then you plug in the given values and solve for x.
Hope this helps!