Answer:
<em>Answer:</em> <em>A</em> 
Step-by-step explanation:
The HL Theorem states that if the hypotenuse and leg of one right triangle are congruent to the hypotenuse and leg of another right triangle, then the two triangles are congruent.
Triangles TRO and OMT share the hypotenuse, so the first part of the theorem is met.
Both triangles are right because they have an internal angle of 90°, so the second condition is also met.
Since there is no indication of any leg to be congruent to another leg, we need additional information to prove that both triangles are congruent.
One of these two conditions should be met:
Side TM is congruent to side OR, or
Side MO is congruent to side RT.
From the available options, only the first is correct.
Answer: A 
In this case: x 1 = - 10, y 1 = - 2;
x 2 = - 4 , y 2 = - 2
The distance between the points :

Answer:
d = 6
Answer:
(9159 / 7 = 1308.429)
Step-by-step explanation:
Simply multiply the last digit by 2 and then subtract the product from the remaining digits.
If that difference is divisible by 7, then 9159 is divisible by 7.
The last digit in 9159 is 9 and the remaining digits are 915. Thus, the math to determine if 9159 is divisible by 7 using our alternate method is:
915 - (9 x 2) = 897
Since 897 is not divisible by 7, 9159 is also not divisible by 7.
Therefore, the answer to "Is 9159 Divisible By 7?" is no.
(9159 / 7 = 1308.429)