Answer:
y = -
x + 2
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
y = 3x - 3 ← is in slope- intercept form
with slope m = 3
Given a line with slope m then the slope of a line perpendicular to it is
= -
= -
, hence
y = -
x + c ← is the partial equation of the perpendicular line
To find c substitute (3, 1) into the partial equation
1 = - 1 + c ⇒ c = 1 + 1 = 2
y = -
x + 2 ← equation of perpendicular line
We know that the point is in Q II. Thus, the x-coordinate of this point will be negative and the y-coordinate will be positive.
The y-coordinate is essentially given, and is y=4.
Imagine drawing a vertical line thru x=-2. This line will intersect y=4 at (-2,4).
The coordinates of the point are (-2, -4).
This is volume of a sphere.
Answer: x=1 or x=-3
Step-by-step explanation:
Quadratic formula is 
a=1 b=2 c=-3
Substitute

Answer: The velocity of the ball is 108.8 ft/s downwards.
Step-by-step explanation:
When the ball is dropped, the only force acting on the ball will be the gravitational force. Then the acceleration of the ball will be the gravitational acceleration, that is something like:
g = 32 ft/s^2
To get the velocity equation we need to integrate over time, to get:
v(t) = (32ft/s^2)*t + v0
where v0 is the initial velocity of the ball. (t = 0s is when the ball is dropped)
Because it is dropped, the initial velocity is equal to zero, then we get:
v(t) = (32ft/s^2)*t
Which is the same equation that we can see in the hint.
Now we want to find the velocity 3.4 seconds after the ball is dropped, then we just replace t by 3.4s, then we get:
v(3.4s) = (32ft/s^2)*3.4s = 108.8 ft/s
The velocity of the ball is 108.8 ft/s downwards.