Answer:
y = 0
Step-by-step explanation:
1 c.
If we have an exponential function of the form
, where "a" is any positive integer, say, then that function will take the general shape of the function shown in the picture.
It will always approach the x-axis but never meet (touch). Any line that a function (graph) approaches but never touches, is known as an asymptote to the graph.
Since the function
follows the path of the general form shown above, this also approaches the x-axis, but never touches. So, the x-axis is the asymptote of the function.
We know
x-axis has equation y = 0, and
y-axis has equation x = 0
Here, the x-axis is the asymptote, so the equation is:
y = 0
Answer:
A
Step-by-step explanation:
Answer: $628
Step-by-step explanation:
Answer: The length of segments between this point and the vertices of greater base are
and 18.
Step-by-step explanation:
Let ABCD is the trapezoid, ( shown in below diagram)
In which AB is the greater base and AB = 18 DC= 11, AD= 3 and BC = 7
Let P is the point where The extended legs meet,
So, according to the question, we have to find out : AP and BP
In Δ APB and Δ DPC,
∠ DPC ≅ ∠APB ( reflexive)
∠ PDC ≅ ∠ PAB ( By alternative interior angle theorem)
And, ∠ PCD ≅ ∠ PBA ( By alternative interior angle theorem)
Therefore, By AAA similarity postulate,

Let, DP =x
⇒ 
⇒ 33 +11x = 18x
⇒ x = 33/7= 
Thus, PD= 
But, AP= PD + DA
AP= 
Now, let PC =y,
⇒ 
⇒ 77 + 11y = 18y
⇒ y = 77/7 = 11
Thus, PC= 11
But, PB= PC + CB
PB= 11+7 = 18
Answer:
49 divide by 1000 is 0.049.
hope it helps :) :) :)