Answer:
(a) -0.00017 M/s;
(b) 0.00034 M/s
Explanation:
(a) Rate of a reaction is defined as change in molarity in a unit time, that is:

Given the following reaction:

We may write the rate expression in terms of reactants firstly. Since reactants are decreasing in molarity, we're adding a negative sign. Similarly, if we wish to look at the overall reaction rate, we need to divide by stoichiometric coefficients:
![r = -\frac{\Delta [N_2O_5]}{2 \Delta t}](https://tex.z-dn.net/?f=r%20%3D%20-%5Cfrac%7B%5CDelta%20%5BN_2O_5%5D%7D%7B2%20%5CDelta%20t%7D)
Reaction rate is also equal to the rate of formation of products divided by their coefficients:
![r = \frac{\Delta [NO_2]}{4 \Delta t} = \frac{\Delta [O_2]}{\Delta t}](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7B%5CDelta%20%5BNO_2%5D%7D%7B4%20%5CDelta%20t%7D%20%3D%20%5Cfrac%7B%5CDelta%20%5BO_2%5D%7D%7B%5CDelta%20t%7D)
Let's find the rate of disappearance of the reactant firstly. This would be found dividing the change in molarity by the change in time:

(b) Using the relationship derived previously, we know that:
![-\frac{\Delta [N_2O_5]}{2 \Delta t} = \frac{\Delta [NO_2]}{4 \Delta t}](https://tex.z-dn.net/?f=-%5Cfrac%7B%5CDelta%20%5BN_2O_5%5D%7D%7B2%20%5CDelta%20t%7D%20%3D%20%5Cfrac%7B%5CDelta%20%5BNO_2%5D%7D%7B4%20%5CDelta%20t%7D)
Rate of appearance of nitrogen dioxide is given by:
![r_{NO_2} = \frac{\Delta [NO_2]}{\Delta t}](https://tex.z-dn.net/?f=r_%7BNO_2%7D%20%3D%20%5Cfrac%7B%5CDelta%20%5BNO_2%5D%7D%7B%5CDelta%20t%7D)
Which is obtained from the equation:
![-\frac{\Delta [N_2O_5]}{2 \Delta t} = \frac{\Delta [NO_2]}{4 \Delta t}](https://tex.z-dn.net/?f=-%5Cfrac%7B%5CDelta%20%5BN_2O_5%5D%7D%7B2%20%5CDelta%20t%7D%20%3D%20%5Cfrac%7B%5CDelta%20%5BNO_2%5D%7D%7B4%20%5CDelta%20t%7D)
If we multiply both sides by 4, that is:
![-\frac{4 \Delta [N_2O_5]}{2 \Delta t} = \frac{\Delta [NO_2]}{\Delta t}](https://tex.z-dn.net/?f=-%5Cfrac%7B4%20%5CDelta%20%5BN_2O_5%5D%7D%7B2%20%5CDelta%20t%7D%20%3D%20%5Cfrac%7B%5CDelta%20%5BNO_2%5D%7D%7B%5CDelta%20t%7D)
This yields:
[tex]r_{NO_2} = \frac{\Delta [NO_2]}{\Delta t} = -2\frac{\Delta [N_2O_5]}{ \Delta t} = -2\cdot (-0.00017 M/s) = 0.00034 M/s[tex]
It needs four hydrogen atoms
239.0 g/mol
Add the mass of each individual atom
Answer:
See explanation
Explanation:
Microwaves work by flipping water molecules upside down, then right side up again, and so on at very high speeds, and the friction generates heat. Some glass or plastic isn't affected by the microwaves, so the molecules don't get flipped, and so no friction occurs and no heat is produced, leading to the dish not being heated up.
To determine the expected pH of the resulting solution of the following substances, create a balanced chemical equation of their ionization in water:
HI
HI + H2O ---> H+ + I-
It completely dissociates into H+ and I-. Due to the presence of the Hydronium Ion, the solution is acidic.
KBr
KBr + H2O ----> HBr + KOH
The salt KBr is formed by a strong base and a weak acid, therefore, the solution it forms with water is basic.
LiOH
LiOH + H2O ----> Li+ + OH-
It dissociates completely in water, turns into Li+ and OH-. Due to the presence of Hydroxide Ion, the solution becomes basic.