Answer:
Problem B: x = 12; m<EFG = 48
Problem C: m<G = 60; m<J = 120
Step-by-step explanation:
Problem B.
Angles EFG and IFH are vertical angles, so they are congruent.
m<EFG = m<IFH
4x = 48
x = 12
m<EFG = m<IFH = 48
Problem C.
One angle is marked a right angle, so its measure is 90 deg.
The next angle counterclockwise is marked 30 deg.
Add these two measures together, and you get 120 deg.
<J is vertical with the angle whose measure is 120 deg, so m<J = 120 deg.
Angles G and J from a linear pair, so they are supplementary, and the sum of their measures is 180 deg.
m<G = 180 - 120 = 60
First, let’s all acknowledge that whoever comes up with problems like this WANTS kids to hate math...smh
I’m sure there is a prettier way to solve this, but here’s what I did:
8(2.25) + 3(22.50) =
18 + 67.50 = 85.50 per “set” of balls/jerseys
400/85.50 = 4.678 = number of “sets” he can buy. Round down to 4 so we have room for tax.
85.5 x 4 “sets”= $342
Tax on 342 is 0.06 x 342 = 20.52
$342 + 20.52 = $362.52 spent
Basketballs = 4 sets x 8 balls per set= 32
Jerseys = 4 sets x 3 jerseys per set= 12
32 basketballs, 12 jerseys, $362.52 spent
Answer:(
7
,
6
)
Explanation:
We can find the coordinates of the midpoint of a line segment, by finding the mean of the sum of the
x
coordinates and the mean of the sum of the
y
coordinates.
x
=
8
+
6
2
=
7
y
=
2
+
10
2
=
6
Coordinate of midpoint:
(
7
,
6
)
Answer:
Step-by-step explanation: