Answer:
(a) The average cost function is 
(b) The marginal average cost function is 
(c) The average cost approaches to 95 if the production level is very high.
Step-by-step explanation:
(a) Suppose
is a total cost function. Then the average cost function, denoted by
, is

We know that the total cost for making x units of their Senior Executive model is given by the function

The average cost function is

(b) The derivative
of the average cost function, called the marginal average cost function, measures the rate of change of the average cost function with respect to the number of units produced.
The marginal average cost function is

(c) The average cost approaches to 95 if the production level is very high.
![\lim_{x \to \infty} (\bar{C}(x))=\lim_{x \to \infty} (95+\frac{230000}{x})\\\\\lim _{x\to a}\left[f\left(x\right)\pm g\left(x\right)\right]=\lim _{x\to a}f\left(x\right)\pm \lim _{x\to a}g\left(x\right)\\\\=\lim _{x\to \infty \:}\left(95\right)+\lim _{x\to \infty \:}\left(\frac{230000}{x}\right)\\\\\lim _{x\to a}c=c\\\lim _{x\to \infty \:}\left(95\right)=95\\\\\mathrm{Apply\:Infinity\:Property:}\:\lim _{x\to \infty }\left(\frac{c}{x^a}\right)=0\\\lim_{x \to \infty} (\frac{230000}{x} )=0](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%28%5Cbar%7BC%7D%28x%29%29%3D%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%2895%2B%5Cfrac%7B230000%7D%7Bx%7D%29%5C%5C%5C%5C%5Clim%20_%7Bx%5Cto%20a%7D%5Cleft%5Bf%5Cleft%28x%5Cright%29%5Cpm%20g%5Cleft%28x%5Cright%29%5Cright%5D%3D%5Clim%20_%7Bx%5Cto%20a%7Df%5Cleft%28x%5Cright%29%5Cpm%20%5Clim%20_%7Bx%5Cto%20a%7Dg%5Cleft%28x%5Cright%29%5C%5C%5C%5C%3D%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%2895%5Cright%29%2B%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%28%5Cfrac%7B230000%7D%7Bx%7D%5Cright%29%5C%5C%5C%5C%5Clim%20_%7Bx%5Cto%20a%7Dc%3Dc%5C%5C%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%2895%5Cright%29%3D95%5C%5C%5C%5C%5Cmathrm%7BApply%5C%3AInfinity%5C%3AProperty%3A%7D%5C%3A%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%7D%5Cleft%28%5Cfrac%7Bc%7D%7Bx%5Ea%7D%5Cright%29%3D0%5C%5C%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%28%5Cfrac%7B230000%7D%7Bx%7D%20%29%3D0)

Answer: 287
Step-by-step explanation:
8, 17, 26
So we know that the sequence pattern is + 9 for every term and the first 3 terms are given.
That means we need 29 more terms to get to the 32nd term.
29 * 9 = 261
261 + 26 = 287
287 is 29 terms past 26, which is the 3rd term.
The answer is x^4-6x^3+12x^2-28/x^2
C is right. She has partially completed the construction. Her next step is to use the arc markings to determine the radius to construct the circle.