Answer:
∠BKM= ∠ABK
Therefore AB ║KM (∵ ∠BKM= ∠ABK and lies between AB and KM and BK is the transversal line)
m∠MBK ≅ m∠BKM (Angles opposite to equal side of ΔBMK are equal)
Step-by-step explanation:
Given: BK is an angle bisector of Δ ABC. and line KM intersect BC such that, BM = MK
TO prove: KM ║AB
Now, As given in figure 1,
In Δ ABC, ∠ABK = ∠KBC (∵ BK is angle bisector)
Now in Δ BMK, ∠MBK = ∠BKM (∵ BM = MK and angles opposite to equal sides of a triangle are equal.)
Now ∵ ∠MBK = ∠BKM
and ∠ABK = ∠KBM
∴ ∠BKM= ∠ABK
Therefore AB ║KM (∵ ∠BKM= ∠ABK and BK is the transversal line)
Hence proved.
Convert 0.5 into fraction and then into ratio
=>0.5
=>5/10
=>1/2
=>1:2
Hope it helped
Word form:
Two and seven hundred eighty-nine thousandths
Expanded form:
2
+ 0.7
+ 0.08
+ 0.009
There isn't a rectangular prism. Guess 12.
Answer:
x = -7 ±3i
Step-by-step explanation:
(x+7)^2+9=0
Subtract 9 from each side
(x+7)^2+9-9=0-9
(x+7)^2=-9
Take the square root of each side
sqrt((x+7)^2) = ±sqrt(-9)
We know sqrt(ab) = sqrt(a) sqrt(b)
x+7 = ±sqrt(-1) sqrt(9)
We know that sqrt(-1) is the imaginary number i
x+7 = ±i *3
x+7 =±3i
Subtract 7 from each side
x+7-7 = -7 ±3i
x = -7 ±3i