Answer:
- <u>59.0891 g (rounded to 4 decimal places)</u>
Explanation:
<em>Half-life time</em> of a radioactive substance is the time for half of the substance to decay.
Thus, the amount of the radioactive substance that remains after a number n of half-lives is given by:
Where:
- A is the amount that remains of the substance after n half-lives have elapses, and
- A₀ is the starting amount of the substance.
In this problem, you have that the half-live for your sample (polonium-210) is 138 days and the number of days elapsed is 330 days. Thus, the number of half-lives elapsed is:
- 330 days / 138 days = 2.3913
Therefore, the amount of polonium-210 that will be left in 330 days is:
Answer: the answer is A
Step-by-step explanation:
Answer: the answer is (2,-4) if that's not the answer then can u post a full picture of the question
Step-by-step explanation:
Answer:
37°
Step-by-step explanation:
You can see it is a right angle. Do 90-AOB angle=BOC angle.
Answer:
The lifeguard should run across the shore a distance of 48.074 m before jumpng into the water in order to minimize the time to reach the child.
Step-by-step explanation:
This is a problem of optimization.
We have to minimize the time it takes for the lifeguard to reach the child.
The time can be calculated by dividing the distance by the speed for each section.
The distance in the shore and in the water depends on when the lifeguard gets in the water. We use the variable x to model this, as seen in the picture attached.
Then, the distance in the shore is d_b=x and the distance swimming can be calculated using the Pithagorean theorem:

Then, the time (speed divided by distance) is:

To optimize this function we have to derive and equal to zero:
![\dfrac{dt}{dx}=\dfrac{1}{4}+\dfrac{1}{1.1}(\dfrac{1}{2})\dfrac{2x-120}{\sqrt{x^2-120x+5200}} \\\\\\\dfrac{dt}{dx}=\dfrac{1}{4} +\dfrac{1}{1.1} \dfrac{x-60}{\sqrt{x^2-120x+5200}} =0\\\\\\ \dfrac{x-60}{\sqrt{x^2-120x+5200}} =\dfrac{1.1}{4}=\dfrac{2}{7}\\\\\\ x-60=\dfrac{2}{7}\sqrt{x^2-120x+5200}\\\\\\(x-60)^2=\dfrac{2^2}{7^2}(x^2-120x+5200)\\\\\\(x-60)^2=\dfrac{4}{49}[(x-60)^2+40^2]\\\\\\(1-4/49)(x-60)^2=4*40^2/49=6400/49\\\\(45/49)(x-60)^2=6400/49\\\\45(x-60)^2=6400\\\\](https://tex.z-dn.net/?f=%5Cdfrac%7Bdt%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B4%7D%2B%5Cdfrac%7B1%7D%7B1.1%7D%28%5Cdfrac%7B1%7D%7B2%7D%29%5Cdfrac%7B2x-120%7D%7B%5Csqrt%7Bx%5E2-120x%2B5200%7D%7D%20%5C%5C%5C%5C%5C%5C%5Cdfrac%7Bdt%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B4%7D%20%2B%5Cdfrac%7B1%7D%7B1.1%7D%20%5Cdfrac%7Bx-60%7D%7B%5Csqrt%7Bx%5E2-120x%2B5200%7D%7D%20%3D0%5C%5C%5C%5C%5C%5C%20%20%5Cdfrac%7Bx-60%7D%7B%5Csqrt%7Bx%5E2-120x%2B5200%7D%7D%20%3D%5Cdfrac%7B1.1%7D%7B4%7D%3D%5Cdfrac%7B2%7D%7B7%7D%5C%5C%5C%5C%5C%5C%20x-60%3D%5Cdfrac%7B2%7D%7B7%7D%5Csqrt%7Bx%5E2-120x%2B5200%7D%5C%5C%5C%5C%5C%5C%28x-60%29%5E2%3D%5Cdfrac%7B2%5E2%7D%7B7%5E2%7D%28x%5E2-120x%2B5200%29%5C%5C%5C%5C%5C%5C%28x-60%29%5E2%3D%5Cdfrac%7B4%7D%7B49%7D%5B%28x-60%29%5E2%2B40%5E2%5D%5C%5C%5C%5C%5C%5C%281-4%2F49%29%28x-60%29%5E2%3D4%2A40%5E2%2F49%3D6400%2F49%5C%5C%5C%5C%2845%2F49%29%28x-60%29%5E2%3D6400%2F49%5C%5C%5C%5C45%28x-60%29%5E2%3D6400%5C%5C%5C%5C)

As
, the lifeguard should run across the shore a distance of 48.074 m before jumpng into the water in order to minimize the time to reach the child.