For a), this is clearly a given as it is literally to the right of where it says “Given:”
For b), since ON bisects ∠JOH, this means that it splits it into two separate angles - JON and HON, which are similar due to that bisects mean that it splits it equally into two halves
For c), since NO is the same thing as NO, it is equal to itself
For d), since AAS (angle-angle-side) congruence states that if there are two angles that are congruent (proved in a) and b) ) as well as that a side is congruent (proved in c) ), two triangles are congruent
For e), since two triangles are congruent, every side must have one side that it matches up to in the other triangle. As the opposite side of angle H is JO and the opposite side of angle J is OH, and ∠J=∠H, those two are congruent. As JN and HN are the two sides left, they must be congruent.
Feel free to ask further questions!
I believe the expression would be 7(g)+7
we have

we know that
<u>The Rational Root Theorem</u> states that when a root 'x' is written as a fraction in lowest terms

p is an integer factor of the constant term, and q is an integer factor of the coefficient of the first monomial.
So
in this problem
the constant term is equal to 
and the first monomial is equal to
-----> coefficient is 
So
possible values of p are 
possible values of q are 
therefore
<u>the answer is</u>
The all potential rational roots of f(x) are
(+/-)
,(+/-)
,(+/-)
,(+/-)
,(+/-)
,(+/-)
Answer:
10
Step-by-step explanation: