Answer:
Any points in the shaded region including (2,-2) and (-3,-8)
Step-by-step explanation:
Convert the line into slope intercept form and graph it.
2x-y > 1 becomes -y>1-2x. Divide both sides by -1 and you get y<2x-1. Graph it with the shaded area on the right and a dashed line.
Any point which falls within the shaded red of the graph is a solution. No points on the line since it is not equal to (its dashed) are solutions. Check the location of your points to verify that they fall within this area.
(-3, -8) ---Yes
(-1, -3) ---No
(0, 5) --- No
(1, 6) --- No
(2, -2) ---Yes
Answer:

Standard error of mean = 689
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = $28,520
Standard Deviation, σ = $5600
Mean of sampling distribution =

As per Central Limit Theorem, if the sample size is large enough, then the sampling distribution of the sample means follow approximately a normal distribution.
Sample size, n = 66
Since the sample size is large, we can use normal distribution for approximation.
Standard error of mean =

You have 5 quarters which equals 25 cents each. Which in total comes to $1.25.
You have 15 dimes which is worth 10 cents each.
Which in total comes to $1.50.
$1.50
+$1.25
=$2.75
Answer:40
Step-by-step explanation: i may be wrong but i subtracted 136 from 95 and i got 40 im sorry if it is wrong
This is quite a complex problem. I wrote out a really nice solution but I can't work out how to put it on the website as the app is very poorly made. Still, I'll just have to type it all in...
Okay so you need to use a technique called logarithmic differentiation. It seems quite unnatural to start with but the result is very impressive.
Let y = (x+8)^(3x)
Take the natural log of both sides:
ln(y) = ln((x+8)^(3x))
By laws of logarithms, this can be rearranged:
ln(y) = 3xln(x+8)
Next, differentiate both sides. By implicit differentiation:
d/dx(ln(y)) = 1/y dy/dx
The right hand side is harder to differentiate. Using the substitution u = 3x and v = ln(x+8):
d/dx(3xln(x+8)) = d/dx(uv)
du/dx = 3
Finding dv/dx is harder, and involves the chain rule. Let a = x+ 8:
v = ln(a)
da/dx = 1
dv/da = 1/a
By chain rule:
dv/dx = dv/da * da/dx = 1/a = 1/(x+8)
Finally, use the product rule:
d/dx(uv) = u * dv/dx + v * du/dx = 3x/(x+8) + 3ln(x+8)
This overall produces the equation:
1/y * dy/dx = 3x/(x+8) + 3ln(x+8)
We want to solve for dy/dx, achievable by multiplying both sides by y:
dy/dx = y(3x/(x+8) + 3ln(x+8))
Since we know y = (x+8)^(3x):
dy/dx = ((x+8)^(3x))(3x/(x+8) + 3ln(x+8))
Neatening this up a bit, we factorise out 3/(x+8):
dy/dx = (3(x+8)^(3x-1))(x + (x+8)ln(x+8))
Well wasn't that a marathon? It's a nightmare typing that in, I hope you can follow all the steps.
I hope this helped you :)