1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sedaia [141]
2 years ago
14

Pleaseee helppp with thissss asapppp

Mathematics
1 answer:
Natasha2012 [34]2 years ago
8 0

As we know that the standard equation of circle is {\bf{(x-h)^{2}+(y-k)^{2}=r^{2}}} , where <em>r</em> is the radius of circle and centre at <em>(h,k) </em>

Now , as the circle passes through <em>(2,9)</em> so it must satisfy the above equation after putting the values of <em>h</em> and <em>k</em> respectively

{:\implies \quad \sf \{2-(-1)\}^{2}+(9-5)^{2}=r^{2}}

{:\implies \quad \sf (3)^{2}+(4)^{2}=r^{2}}

{:\implies \quad \sf 9+16=r^{2}}

After raising ½ power to both sides , we will get <em>r = +5 , -5</em> , but as radius can never be -<em>ve</em> . So <em>r = +</em><em>5</em><em> </em>

Now , putting values in our standard equation ;

{:\implies \quad \sf \{x-(-1)\}^{2}+(y-5)^{2}=(5)^{2}}

{:\implies \quad \bf \therefore \quad \underline{\underline{(x+1)^{2}+(y-5)^{2}=25}}}

<em>This is the required equation of </em><em>Circle</em>

Refer to the attachment as well !

You might be interested in
What is the answer to the equation -(-(-(-2)))
marysya [2.9K]

Answer:

2

Step-by-step explanation:

Since there are four negative signs, we have -1 multiplying each other 4 times,  multiplying by positive 2. This is then 1 * 2, which is 2.

7 0
3 years ago
Read 2 more answers
Solve the following equation: <br>(n + 1) + 3(n - 1) = 2(n - 1)(n + 1)​
Mnenie [13.5K]

Answer:

n = 0, n =2

Step-by-step explanation:

Given

(n + 1) + 3(n - 1) = 2(n - 1)(n + 1) ← distribute parenthesis on both sides

n + 1 + 3n - 3 = 2(n² - 1), that is

4n - 2 = 2n² - 2 ( subtract 4n - 2 from both sides )

0 = 2n² - 4n ← factor out 2n from each term )

0 = 2n(n - 2)

Equate each factor to zero and solve for n

2n = 0 ⇒ n = 0

n - 2 = 0 ⇒ n = 2

7 0
3 years ago
9. I NEED HELP ASAP!! PLEASE PUT AND ANSWER AND STEP BY STEP EQUATION!! IF YOU DON'T KNOW THE ANSWER DON'T PUT ANYTHING!!
stiv31 [10]
9.) Answer: B. f(x) = 4 - x



Explanation/Proof:

If we substitute, the answers are correct.

f(x) = 4 - (1)

f(x) = 3 ✅


f(x) = 4 - (2)

f(x) = 2 ✅


And so on and so forth.

3 0
2 years ago
Read 2 more answers
I guess I'm lacking in differential equations. I couldn't solve this question. Can you help me?
Sonja [21]

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties
  • Reciprocals

<u>Algebra II</u>

  • Log/Ln Property: ln(\frac{a}{b} ) = ln(a) - ln(b)

<u>Calculus</u>

Derivatives

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Derivative of Ln: \frac{d}{dx} [ln(u)] = \frac{u'}{u}

Step-by-step explanation:

<u>Step 1: Define</u>

ln(\frac{2x-1}{x-1} )=t

<u>Step 2: Differentiate</u>

  1. Rewrite:                                                                                                         t = ln(\frac{2x-1}{x-1})
  2. Rewrite [Ln Properties]:                                                                                 t = ln(2x-1) - ln(x - 1)
  3. Differentiate [Ln/Chain Rule/Basic Power Rule]:                                         \frac{dt}{dx} = \frac{1}{2x-1} \cdot 2 - \frac{1}{x-1} \cdot 1
  4. Simplify:                                                                                                          \frac{dt}{dx} = \frac{2}{2x-1} - \frac{1}{x-1}
  5. Rewrite:                                                                                                          \frac{dt}{dx} = \frac{2(x-1)}{(2x-1)(x-1)} - \frac{2x-1}{(2x-1)(x-1)}
  6. Combine:                                                                                                       \frac{dt}{dx} = \frac{-1}{(2x-1)(x-1)}
  7. Reciprocate:                                                                                                  \frac{dx}{dt} = -(2x-1)(x-1)
  8. Distribute:                                                                                                         \frac{dx}{dt} = (1-2x)(x-1)
8 0
3 years ago
Read 2 more answers
Consider continuous functions f, g, h, and k. Then complete the statements.
solmaris [256]

Answer:

g and g

Step-by-step explanation:

just did

4 0
3 years ago
Read 2 more answers
Other questions:
  • Please simplify 6-(2-4x)
    10·2 answers
  • Can someone please tell me the steps to find a number four?
    5·2 answers
  • How would I solve 1 and 2?
    8·1 answer
  • Quan bought 8.6 meters of fabric.how many centimeters of fabric did he buy
    6·1 answer
  • Please help I will thank you and mark you brain list if you do this word problem correct
    10·1 answer
  • Patrick's favorite shade of purple paint is made with 4 ounces of blue paint for every 3 ounces of red paint. Which of the follo
    8·1 answer
  • A 10-sided die numbered 1 to 10 is rolled once. Find these probabilities.
    6·2 answers
  • What is the slope of the line in the graph?
    5·1 answer
  • Help ASAP! Examine the table, which contains some points of a quadratic function. Which statements are true about the intercepts
    8·1 answer
  • Instructions: Find the measure of the indicated angle to the nearest degree.Please help?And now how to do it.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!