Answer:
The required vector parametric equation is given as:
r(t) = <3cost, 3sint>
For 0 ≤ t ≤ 2π
Step-by-step explanation:
Given that
f(x, y) = <2y, -sin(y)>
Since C is a cirlce centered at the origin (0, 0), with radius r = 3, it takes the form
(x - 0)² + (y - 0)² = r²
Which is
x² + y² = 9
Because
cos²β + sin²β = 1
and we want to find a vector parametric equations r(t) for the circle C that starts at the point (3, 0), we can write
x = 3cosβ
y = 3sinβ
So that
x² + y² = 3²cos²β + 3²sin²β
= 9(cos²β + sin²β) = 9
That is
x² + y² = 9
The vector parametric equation r(t) is therefore given as
r(t) = <x(t), y(t)>
= <3cost, 3sint>
For 0 ≤ t ≤ 2π
Answer:
45,54,63
Step-by-step explanation:
The multiples of 9 are
9,19,27,36,45,54,63,72,81
The three multiples are 36 are
45,54,63
Answer:
It would affect the mean, range, and standard deviation
Step-by-step explanation:
I got this right on the test :)
Answer: The measure of AC is 32.
Explanation:
It is given that the Points B, D, and F are midpoints of the sides of ΔACE. EC = 38 and DF = 16.
The midpoint theorem states that the if a line segments connecting two midpoints then the line is parallel to the third side and it's length is half of the third side.
Since F and D are midpoints of AE and EC respectively.
So by midpoint theorem length of AC is twice of DF.



Therefore, the length of AC is 32.
If you subtract 617 and 385 it will give you the answer which is 232 the plane did 232 in the morning than in the afternoon
Hope it helps :)