1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkinab [10]
2 years ago
11

Help meee please l don’t understand it’s a new topic

Mathematics
1 answer:
Veseljchak [2.6K]2 years ago
6 0

The unsorted stem-and-leaf diagram would look like this:

5 | 6, 3, 5, 0, 2

3 | 2, 7, 3, 3, 4

2 | 6, 9, 1, 1

1 | 7, 1, 1, 6, 8

4 | 4, 2, 4, 3, 4

Basically, you separate the given set of numbers by their whole number part (the digit before the decimal) and list the numbers' fractional part (digit after the decimal) in the order you see them.

The sorted diagram would then be

1 | 1, 1, 6, 7, 8

2 | 1, 1, 6, 9

3 | 2, 3, 3, 4, 7

4 | 2, 3, 4, 4, 4

5 | 0, 2, 3, 5, 6

You might be interested in
Really need help! Brainliest to correct!
zlopas [31]

Answer:

<u>Given</u>:

  • R(x) = 59x - 0.3x²
  • C(x) = 3x + 14

<u>Find the following</u>:

  • P(x) = R(x) - C(x) = 59x - 0.3x² - 3x - 14 = -0.3x² + 56x - 14
  • R(80) = 59(80) - 0.3(80²) = 2800
  • C(80) = 3(80) + 14 = 254
  • P(80) = 2800 - 254 = 2546
7 0
3 years ago
Choose what the expressions below best represent within the context of the word problem. The tens digit of a number is twice the
Usimov [2.4K]
<span>2x + x = 12
=> x =12/3 =4
so, original number is 84.

</span>
6 0
4 years ago
The given matrix is the augmented matrix for a linear system. Use technology to perform the row operations needed to transform t
shtirl [24]

Answer:

x_{1} = \frac{176}{127} + \frac{71}{127}x_{4}\\\\ x_{2} = \frac{284}{127} + \frac{131}{254}x_{4}\\\\x_{3} = \frac{845}{127} + \frac{663}{254}x_{4}\\

Step-by-step explanation:

As the given Augmented matrix is

\left[\begin{array}{ccccc}9&-2&0&-4&:8\\0&7&-1&-1&:9\\8&12&-6&5&:-2\end{array}\right]

Step 1 :

r_{1}↔r_{1} - r_{2}

\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&7&-1&-1&:9\\8&12&-6&5&:-2\end{array}\right]

Step 2 :

r_{3}↔r_{3} - 8r_{1}

\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&7&-1&-1&:9\\0&124&-54&77&:-82\end{array}\right]

Step 3 :

r_{2}↔\frac{r_{2}}{7}

\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&124&-54&77&:-82\end{array}\right]

Step 4 :

r_{1}↔r_{1} + 14r_{2} , r_{3}↔r_{3} - 124r_{2}

\left[\begin{array}{ccccc}1&0&4&-11&:-8\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&0&- \frac{254}{7} &\frac{663}{7} &:-\frac{1690}{7} \end{array}\right]

Step 5 :

r_{3}↔\frac{r_{3}. 7}{254}

\left[\begin{array}{ccccc}1&0&4&-11&:-8\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&0&1&-\frac{663}{254} &:-\frac{1690}{254} \end{array}\right]

Step 6 :

r_{1}↔r_{1} - 4r_{3} , r_{2}↔r_{2} + \frac{1}{7} r_{3}

\left[\begin{array}{ccccc}1&0&0&-\frac{71}{127} &:\frac{176}{127} \\0&1&0&-\frac{131}{254} &:\frac{284}{127} \\0&0&1&-\frac{663}{254} &:\frac{845}{127} \end{array}\right]

∴ we get

x_{1} = \frac{176}{127} + \frac{71}{127}x_{4}\\\\ x_{2} = \frac{284}{127} + \frac{131}{254}x_{4}\\\\x_{3} = \frac{845}{127} + \frac{663}{254}x_{4}\\

6 0
3 years ago
I need help or I will faill this
kari74 [83]

Answer:

-4x2 + 3x - 225

 ———————————————

        3    

Step-by-step explanation:

Step  1  :

               4

Simplify   —

                3

Equation at the end of step  1  :

        4            

 (x -  (— • x2)) -  75

        3            

Step  2  :

Equation at the end of step  2  :

       4x2      

 (x -  ———) -  75

        3      

Step  3  :

Rewriting the whole as an Equivalent Fraction :

3.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  3  as the denominator :

         x     x • 3

    x =  —  =  —————

         1       3  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

3.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

x • 3 - (4x2)     3x - 4x2

—————————————  =  ————————

      3              3    

Equation at the end of step  3  :

 (3x - 4x2)    

 —————————— -  75

     3          

Step  4  :

Rewriting the whole as an Equivalent Fraction :

4.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  3  as the denominator :

         75     75 • 3

   75 =  ——  =  ——————

         1        3    

Step  5  :

Pulling out like terms :

5.1     Pull out like factors :

  3x - 4x2  =   -x • (4x - 3)  

Adding fractions that have a common denominator :

5.2       Adding up the two equivalent fractions

-x • (4x-3) - (75 • 3)     -4x2 + 3x - 225

——————————————————————  =  ———————————————

          3                       3        

Step  6  :

Pulling out like terms :

6.1     Pull out like factors :

  -4x2 + 3x - 225  =   -1 • (4x2 - 3x + 225)  

Trying to factor by splitting the middle term

6.2     Factoring  4x2 - 3x + 225  

The first term is,  4x2  its coefficient is  4 .

The middle term is,  -3x  its coefficient is  -3 .

The last term, "the constant", is  +225  

Step-1 : Multiply the coefficient of the first term by the constant   4 • 225 = 900  

Step-2 : Find two factors of  900  whose sum equals the coefficient of the middle term, which is   -3 .

     -900    +    -1    =    -901  

     -450    +    -2    =    -452  

     -300    +    -3    =    -303  

     -225    +    -4    =    -229  

     -180    +    -5    =    -185  

     -150    +    -6    =    -156  

For tidiness, printing of 48 lines which failed to find two such factors, was suppressed

Observation : No two such factors can be found !!

Conclusion : Trinomial can not be factored

Final result :

 -4x2 + 3x - 225

 ———————————————

        3        

7 0
3 years ago
What percentage of the blocks is shaded in the picture?
emmasim [6.3K]
Hello! So the blocks are lined up in rows of 8. When you count the number of rows, there are 10 of them. 3 rows of 8 blocks are shaded out of 10 of them. That's 24 blocks shaded out of 80, because 8 * 10 is 80, and 3 * 8 is 24. Let's divide. 24/80 is 0.3.Let's multiply that by 100 to get it in percent form. 0.3 * 100 is 30. There. 30% of blocks are shaded in the picture.
7 0
3 years ago
Other questions:
  • What did the doctor say after examining yunn yunsberger?
    10·1 answer
  • A florist makes 24 bouquets. She uses 16 flowers for each bouquet. Altogether, how many flowers does she need?
    7·2 answers
  • there are 641 boys and 490 girls in Greenland school age child makes eight art pieces for classroom decorations all the art piec
    6·1 answer
  • Jan's age is 3 years less than twice trits age. The sum of their ages is 30. Find their ages.
    6·1 answer
  • Mr. Hollis determines that he gives away $800 each month. If he gives away 16% of his budget how much is his overall budget?
    10·1 answer
  • What is the ratio of salty snacks to sweet snacks in the vending machine
    7·1 answer
  • 3. Find the measure of x.<br> a 18°<br> b. 54°<br> C 126<br> d. 45
    15·2 answers
  • A triangular banner has an area 1500 square feet. Find the measures of the base and height of the triangle if the base is five-s
    13·1 answer
  • How long does it take an account with a principal of $600 to earn $90 in interest at a simple annual interest rate of 5%
    10·1 answer
  • YA
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!