Standard deviation is a measurement of a collection of values' variance or dispersion. The standard deviation of the data set is 2.474.
<h3>How to calculate the standard deviation of a data set?</h3>
Step 1: Find the mean
Step 2: Find each score’s deviation from the mean
Step 3: Square each deviation from the mean
Step 4: Find the sum of squares
Step 5: Apply the formula

The data set that is given to us is {1, 4, 2, 2, 8, 7, 3}, now use the steps to calculate the standard deviation.
Step 1: Find the mean
The mean of the given data set can be written as,

Step 2: Find each score’s deviation from the mean
1 - 3.857 = -2.857
4 - 3.857 = 0.143
2 - 3.857= -1.857
2 - 3.857= -1.857
8 - 3.857 = 4.143
7 - 3.857 = 3.143
3 - 3.857 = -0.857
Step 3: Square each deviation from the mean
-2.857² = 8.162
0.143² = 0.02
-1.857² = 3.447
-1.857² = 3.447
4.143² = 17.165
3.143² = 9.877
-0.857²= 0.735
Step 4: Find the sum of squares
8.162+0.20+3.447+3.447+17.165+9.877+0.735 = 42.857
Step 5: Apply the formula

Hence, the standard deviation of the data set is 2.474.
Learn more about Standard Deviation:
brainly.com/question/12402189