Answer:

Explanation:
To convert atoms to moles, Avogadro's Number must be used: 6.022*10²³.
This tells us the amount of particles (atoms, molecules, etc.) in 1 mole of a substance. In this case it is the atoms of potassium. We can create a ratio.

Multiply by the given number of moles: 15.2

The moles of potassium cancel.

The denominator of 1 can be ignored.

Multiply.

The original measurement of moles has 3 significant figures, so our answer must have the same. For the number we calculated that is the hundredth place. The 3 in the thousandth place tells us to leave 5.

In 15.2 moles of potassium, there are <u>9.15*10²⁴ atoms of potassium.</u>
In warmer weather gases tend to expand and take up more room, thus increasing pressure. but in colder weather they will condense or contract and take up less space, therefore lowering the pressure of the tire in this situation.
Answer:
Carbohydrates
Explanation:
Increased exercise intensity means the overall need for energy increases. As we increase exercise intensity we increase our glucose uptake and oxidation which far exceeds uptake, indicating that muscle stores of glycogen are being used. At moderate intensities (65%) there is an increased need for muscle glycogen and muscle triglycerides which is fat. At higher levels of intensities (85%) there is an even greater need for energy, and this is met almost solely by an increased uptake of glucose from the blood and from muscle glycogen.
In the case of fats as an energy fuel source at high intensities, increasing levels of intensity increases fat oxidation but once we get into higher levels of intensity, we return to levels of fat oxidation similar to very low intensities.
The correct answer is alcohol. It is the common component in beer, wine and any liquor. Usually, alcohol is produced by fermentation of organic products containing glucose to produce alcohol, specifically ethanol, as the important product and the by-products water and carbon dioxide.
molar mass = (22.99) + (1.01) + (12.01) + 3(16.00)
molar mass = 84.01 g/mol
//
(508g)(1 mol/84.01 g) = 6.0
There are 6.0 moles of sodium bicarbonate