To solve this inequality, you need to isolate the value of u. To do this, divide both sides by -2. When you do this, keep in mind that when you divide or multiply both sides by a negative in an inequality, you MUST flip the sign, so your answer would be -8 < u or u > -8.
<h3>
Answer: 5</h3>
=================================================
Work Shown:
x^2 - 5x + 1 = 0
x^2 + 1 - 5x = 0
x^2 + 1 = 5x
(x^2 + 1)/x = 5 .... where x is nonzero
(x^2)/x + (1/x) = 5
x + (1/x) = 5
---------------
An alternative method involves solving the original equation using the quadratic formula. After you get the two roots x = p and x = q, you should be able to find that p + 1/p = 5 and also q + 1/q = 5 as well.
In this case,
p = (5 + sqrt(21))/2
q = (5 - sqrt(21))/2