1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ch4aika [34]
2 years ago
15

How many numbers from 0 to 199 have 3 factorsPls Help

Mathematics
2 answers:
sweet-ann [11.9K]2 years ago
7 0

There are 6 numbers from 0 to 199 who have 3 factors. These numbers are:-

  • 4( factors-1,2,4)
  • 9(1,3,9)
  • 25(1,5,25)
  • 49(1,7,49)
  • 121(1,11,121)
  • 169(1,13,169).
<h2 /><h2><em><u>Please</u></em><em><u> </u></em><em><u>mark</u></em><em><u> </u></em><em><u>my</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>brainliest</u></em><em><u>.</u></em></h2>
Gnesinka [82]2 years ago
7 0
There are 6 numbers from 0-199 who have 3
You might be interested in
Write the system of inequalities for the graph
vlabodo [156]

Answer:

2_2 x3 cos x/2 + 1/ 2 4- x 2 dx  

8 0
3 years ago
7. Use the quadratic formula to find the solution(s). x² + 2x - 8 = 0​
morpeh [17]

Hey there!

<u>Use the quadratic formula to find the solution(s). x² + 2x - 8 = 0</u>

  • Answer :

x = -4 or x = 2 ✅

  • Explanation :

<em><u>Quadratic</u></em><em><u> </u></em><em><u>formula </u></em><em><u>:</u></em><em><u> </u></em>ax² + bx + c = 0 where a ≠ 0

The number of real-number solutions <em>(roots)</em> is determined by the discriminant (b² - 4ac) :

  • If b² - 4ac > 0 , There are 2 real-number solutions

  • If b² - 4ac = 0 , There is 1 real-number solution.

  • If b² - 4ac < 0 , There is no real-number solution.

The <em><u>roots</u></em> of the equation are determined by the following calculation:

x =  \frac{ - b \pm  \sqrt{ {b}^{2} - 4ac } }{2a}

Here, we have :

  • a = 1
  • b = 2
  • c = -8

1) <u>Calculate </u><u>the </u><u>discrim</u><u>i</u><u>n</u><u>ant</u><u> </u><u>:</u>

b² - 4ac ⇔ 2² - 4(1)(-8) ⇔ 4 - (-32) ⇔ 36

b² - 4ac = 36 > 0 ; The equation admits two real-number solutions

2) <u>Calculate </u><u>the </u><u>roots </u><u>of </u><u>the </u><u>equation</u><u>:</u>

▪️ (1)

x_1 =  \frac{ - b -  \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\ x_1 =  \frac{ - 2 -  \sqrt{36} }{2(1) }  \\  \\ x_1 =  \frac{ - 2 - 6}{2}   \\ \\ x_1 =  \frac{ - 8}{2}  \\  \\ \blue{\boxed{\red{x_1 = -4}}}

▪️ (2)

x_2 =  \frac{ - b  +   \sqrt{ {b}^{2} - 4ac } }{2a}  \\  \\ x_2 =  \frac{ - 2 +  \sqrt{36} }{2(1)}  \\  \\ x_2 =  \frac{ - 2 + 6}{2}  \\  \\ x_2 =  \frac{4}{2}  \\  \\ \red{\boxed{\blue{x_2 = 2}}}

>> Therefore, your answers are x = -4 or x = 2.

Learn more about <u>quadratic equations</u>:

brainly.com/question/27638369

6 0
2 years ago
Read 2 more answers
PLEASE HURRY I NEED YOUR HELP! show work
8090 [49]

Answer:

1) 10

- 3 3/8

________

=6 5/8

2)  1/5= 2/10

2/10

+ 20 3/10

+ 5 6/10

_________

25 11/10

= 26 1/10

3) 11/12

+ 10

- 10/12

________

= 10 1/12

5 0
3 years ago
Graph x=-4 how is that line placed on the coordinate system
Vesna [10]
A vertical line on the value x = -4
6 0
3 years ago
Read 2 more answers
Graph the equation using the slope and y-intercept<br> y = -x + 3
docker41 [41]

Answer:

Slope: −1

y-intercept: (0,3)

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • Which statement is true?
    8·2 answers
  • 2. The sum of two numbers is 12. The difference of the same two numbers is 4.
    9·1 answer
  • The length of a car is 4.5 m. A model of it is made and the length of the model is 12.5 cm.
    11·2 answers
  • Please Help with this
    6·1 answer
  • Help me please urgent !!
    9·2 answers
  • Four time two times the number is as thrice more the number​
    6·1 answer
  • I dont know, help me please
    9·1 answer
  • डएका समांतर भुज चौकोनाच्या हाताच्या दोन ओली
    10·1 answer
  • What is the unit rate of 2 2/3?
    11·1 answer
  • Please help im not good at math :(
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!