Answer: 132
Step-by-step explanation:
Answer:
?
Step-by-step explanation:
Answer:
The cosine function to model the height of a water particle above and below the mean water line is h = 2·cos((π/30)·t)
Step-by-step explanation:
The cosine function equation is given as follows h = d + a·cos(b(x - c))
Where:
= Amplitude
2·π/b = The period
c = The phase shift
d = The vertical shift
h = Height of the function
x = The time duration of motion of the wave, t
The given data are;
The amplitude
= 2 feet
Time for the wave to pass the dock
The number of times the wave passes a point in each cycle = 2 times
Therefore;
The time for each complete cycle = 2 × 30 seconds = 60 seconds
The time for each complete cycle = Period = 2·π/b = 60
b = π/30 =
Taking the phase shift as zero, (moving wave) and the vertical shift as zero (movement about the mean water line), we have
h = 0 + 2·cos(π/30(t - 0)) = 2·cos((π/30)·t)
The cosine function is h = 2·cos((π/30)·t).
Answer:
63
Step-by-step explanation:
Because 30 percent of 90 equals 27
Thus
90 - 27 = 63.
Please mark brainliest and give 5 stars.
To solve for the confidence interval for the population
mean mu, we can use the formula:
Confidence interval = x ± z * s / sqrt (n)
where x is the sample mean, s is the standard deviation,
and n is the sample size
At 95% confidence level, the value of z is equivalent to:
z = 1.96
Therefore substituting the given values into the
equation:
Confidence interval = 3 ± 1.96 * 5.8 / sqrt (51)
Confidence interval = 3 ± 1.59
Confidence interval = 1.41, 4.59
Therefore the population mean mu has an approximate range
or confidence interval from 1.41 kg to 4.59 kg.