Answer:
The specific heat capacity of the zinc metal measured in this experiment is 0.427 J/g.°C
Explanation:
From the experimental data, the water loses heat because its initial temperature is greater than the final temperature of the mixture. On the other hand, the zinc metal gains heat because its initial temperature is less than the final temperature of the mixture
Heat loss by water = Heat gain by zinc metal
m1C1(T1 - T3) = m2C2(T3 - T2)
m1 is mass of water = 55.4 g
C1 is specific heat capacity of water = 4.2 J/g.°C
m2 is mass of zinc metal = 23.4 g
C2 is specific heat capacity of zinc metal
T1 is the initial temperature of water = 99.61 °C
T2 is the initial temperature of zinc metal = 21.6 °C
T3 is the final temperature of the mixture = 96.4 °C
55.4×4.2(99.61 - 96.4) = 23.4×C2(96.4 - 21.6)
746.9028 = 1750.32C2
C2 = 746.9028/1750.32 = 0.427 J/g.°C
Chemical Potential Energy is released when chemical bonds between atoms are broken (like covalent and ionic) and is released mainly as thermal
<span>Elastic Potential is released when the molecules in the material are allowed to go back to there original form, and is released mainly as kinetic</span>
Answer: the divergent one goes where it looks like there a crack because when you think about divergent it means dividing like seperating.(igneous rock) is where the divegent one goes.
the one that is no plate boundary is sedimentary rock and it occurs by because there is nothing there for it todo there
Explanation:
We already know the formula for finding the energy of a photon with this wavelength as:
<span>E = ħc / λ
</span>The information's that we already know are:
h = Plancks constant
= <span>6.626x10^-34 Js
c = light speed
= </span><span> 2.999x10^8 m/s
</span><span>λ = Wavelength of the light as given in the question
</span> = <span>670.8x10^-9 m
E = amount of energy
Then
E = (</span>6.626x10^-34) * (2.999x10^8)/ (<span>670.8x10^-9)
= </span><span>2.962x10^-19 J</span>
Answer:
Explanation: Light travels at approximately 300,000 kilometers per second in a vacuum, which has a refractive index of 1.0, but it slows down to 225,000 kilometers per second in water (refractive index of 1.3; see Figure 2) and 200,000 kilometers per second in glass (refractive index of 1.5).