1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
seropon [69]
2 years ago
6

A tugboat is pulling a barge into a harbor. The barge is exerting a force of 3000 N against the tugboat.

Physics
2 answers:
laiz [17]2 years ago
5 0

Available options are:

A. –4500 N

B. –2500 N

C. 2500 N

D. 4500 N

Answer:

-4500 N

Explanation:

Given that we have F₁ = 3000N? (force of the barge)

the force of the tugboat is F '

To pull the barge, the force of the tugboat must be greater than or equal to the force of the barge.

Hence, according to Newton's third law which states that for every action or force in nature, there is an opposite reaction.

Therefore considering the available option the correct answer is "- 4500N, " this is because it is greater than the force of the barge and it's in opposition to the force exerted.

sleet_krkn [62]2 years ago
3 0

Answer:

The answer is -4500 N

Explanation:

You might be interested in
14.A 90 kg quarterback gets tackled by being hit by a 120 kg lineman backwards
quester [9]

The acceleration of the quarterback and the lineman is 5.55m/s² and 4.16m/s² respectively in the same direction.

As, we know, the 120 Kg lineman is moving with a force of 500N.

His net acceleration will be in the same direction as his motion.

It is already known that, If M is the mass of the body and a is the acceleration of the body, then the force F on the body can be calculated by using the formula,

F = Ma.

The weight of the quarterback is 90 Kg. He is being hit by a force of 500N.

So, the acceleration can be calculated using the formula,

500N = 90kg x a

a = 5.55 m/s².

Now, the weight if the lineman is 120kg, the force applied by him is 500N.

So, from the formula, his acceleration A will be,

500N = 120Kg x A

A = 4.16 m/s².

both of them will have acceleration in the same direction,

To know more about Force, visit,

brainly.com/question/25239010

#SPJ9

8 0
9 months ago
Nuclear power plants produce useful energy by controlling the process of?
Mandarinka [93]
Nuclear fusion is thed answer

5 0
3 years ago
Read 2 more answers
a mass of 1.00 kg of water at temperature T is poured from a height of 0.100 km into a vessel containing water of the same tempe
Mariana [72]

Answer:

1.34352 kg

Explanation:

m_w = Mass of water falling = 1 kg

h = Height of fall = 0.1 km

\Delta T = Change in temperature = 0.1

c = Specific heat of water = 4186 J/kg K

g = Acceleration due to gravity = 9.81 m/s²

m_v = Mass of water in the vessel

Here the potential energy will balance the internal energy

m_wgh=m_wc\Delta T+m_vc\Delta T\\\Rightarrow m_v=\dfrac{m_wgh-m_wc\Delta T}{c\Delta T}\\\Rightarrow m_v=\dfrac{m_wgh}{c\Delta T}-m_w\\\Rightarrow m_v=\dfrac{1\times 9.81\times 100}{4186\times 0.1}-1\\\Rightarrow m_v=1.34352\ kg

Mass of the water in the vessel is 1.34352 kg

6 0
3 years ago
the average american receives 2.28 mSv dose equivalent from radon each year. Assuming you receive this dose, and it all comes fr
Dmitry [639]

Answer:

The approximate number of decays  this represent  is  N= 23*10^{10}  

Explanation:

 From the question we are told that

    The amount of Radiation received by an average american is I_a = 2.28 \ mSv

     The source of the radiation is S = 5.49 MeV \ alpha \ particle

 Generally

            1 \  J/kg = 1000 mSv

   Therefore  2.28 \ mSv = \frac{2.28}{1000} = 2.28 *10^{-3} J/kg

Also  1eV = 1.602 *10^{-19}J

  Therefore  2.28*10^{-3} \frac{J}{kg} = 2.28*10^{-3} \frac{J}{kg}  * \frac{1ev}{1.602*10^{-19} J} = 1.43*10^{16} ev/kg

           An Average american weighs 88.7 kg

      The total energy received is mathematically evaluated as

        1 kg ------> 1.423*10^{16}ev \\88.7kg  --------> x

Cross-multiplying and making x the subject

           x = 88.7 * 1.423*10^{16} eV

              x = 126.2*10^{16}eV

Therefore the total  energy  deposited is x = 126.2*10^{16}eV

The approximate number of decays  this represent  is mathematically evaluated as

            N = \frac{x}{S}

Where n is the approximate number of decay

   Substituting values

                             N = \frac{126 .2*10^{16}}{5.49*10^6}  

                                  N= 23*10^{10}  

                     

             

7 0
3 years ago
What is your acceleration while sitting in your chair. the latitude of corvallis is 44.4˚.?
marta [7]
 <span>You can start with the equations you know 

a=v^2/r = (2pi*r/T)^2/r = 4pi^2r/T^2 

Radius of earth (R) = 6378.1 km 
Time in one day (T) = 86400 seconds 
Latitude = 44.4 degrees 

If you draw a circle and have the radius going out at a 44.4 degree angle above the center you can then find the r. 

r=Rcos(44.4) 
r=6378.1cos(44.4) 
r= 4556.978198 km or 4556978 m 

Now you can plug this value into the acceleration equation from above... 

a= 1.8*10^8/7.47*10^9 
a= .0241 m/s^2 </span>
8 0
2 years ago
Other questions:
  • Count Rumford concluded that heat energy is produced by
    11·1 answer
  • If a molecule has four hybrid sp3 orbitals, it can be concluded that the molecule has a
    9·2 answers
  • (a) Neil A. Armstrong was the first person to walk on the moon. The distance between the earth and the moon is 3.85 108 m. Find
    5·1 answer
  • On June 9, 1983, the lower part of the Variegated Glacier in Alaska was observed to be moving at a rate of 64 m per day. What is
    8·1 answer
  • You are an engineer in charge of designing a new generation of elevators for a prospective upgrade to the Empire State Building.
    12·1 answer
  • Which of the following is the best definition of an element?
    11·1 answer
  • Which equation describes the sum of the vectors plotted below?
    13·1 answer
  • An object accelerates 1.3 m/s2 when a force of 3.7 newtons is applied to it. What is the mass of the object?
    11·1 answer
  • Consider the diagram of a pendulum's motion shown above. A pendulum can be used to model the change from potential energy
    6·1 answer
  • A 0.75 kg model car is moving west at a speed of 9.0 m/s when it collides head-on with a 2.00 kg model truck that is traveling e
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!