Answer: 83%
Explanation:
Efficiency of the process = work output/work input × 100%
Work input is the energy used up in the process = 720,000Joules
Work output = Force × distance
= (3000×10)× 20
= 600000 Joules
Efficiency= 600000/720000 × 100
= 0.83×100
= 83%
The cost of running the lightbulb A for 30 days at 0.110 per KWh is 1.98
<h3>How to determine the energy </h3>
We'll beging by calculating the energy used by lightbulb A. This can be obtained as follow:
- Power (P) = 25 watts = 25 / 1000 = 0.025 KW
- Time (t) = 30 days = 30 × 24 = 720 h
- Energy (E) =?
E = Pt
E = 0.025 × 720
E = 18 KWh
<h3>How to determine the cost for running the bulb for 30 days</h3>
The cost of running the bulb for 30 days can be obtained as follow:
- Cost per KWh = 0.11
- Energy (E) = 18 KWh
- Cost =?
Cost = energy × Cost per KWh
Cost = 18 × 0.11
Cost = 1.98
Lean more about buying electrical energy:
brainly.com/question/16963941
#SPJ4
Answer:
12353 V m⁻¹ = 12.4 kV m⁻¹
Explanation:
Electric field between the plates of the parallel plate capacitor depends on the potential difference across the plates and their distance of separation.Potential difference across the plates V over the distance between the plates gives the electric field between the plates. Potential difference is the amount of work done per unit charge and is given here as 21 V. Electric field is the voltage over distance.
E = V ÷ d = 21 ÷ 0.0017 = 12353 V m⁻¹
If you and the source of sound are moving apart, then the pitch (frequency) <em>you hear</em> is <em>lower</em> than the pitch (frequency) that's actually leaving the source.
It doesn't matter whether you or the source is the one moving, only that the distance between you is increasing.