Answer:

Step-by-step explanation:

First we need to start with the parentheses:

Now we have to do the power(2):

100 is your final answer.
Answer:
The expected number of floors the elevator stops at, not counting the ground floor is =
n*(1-(1-1/n)^m)
Step-by-step explanation:
Here, we want to know the expected number of floors the elevator stops at.
let X1,X2,X3,..Xn are indicator variable for which value =1 if at least one person stops on that floor otherwise value is 0
P(at least one person stops at floor Xj)=1-P(none of m people stops at floor j)
=1-(1-1/n)^m
here total number of floors on elevetor Stops X=X1+X2+X3+...+Xn
hence expected number of floors on elevetor Stops
E(X)=E(X1)+E(X2)+E(X3)...+E(Xn)
=(1-(1-1/n)^m )+(1-(1-1/n)^m )+(1-(1-1/n)^m )+(1-(1-1/n)^m )+..... n times
=n*(1-(1-1/n)^m)
Answer:
7
Step-by-step explanation:
Q1 = 14
Q3 = 21
Take 21 - 14 and it gives you the interquartile range of 7.
We know that
X²+y²=9 -------> X²+y²=3²
is the equation of a circle with center (0,0) and radius r=3 units
so
<span>the translation of four units to the right and three units down is equals to move the center (0,0)--------> (0+4,0-3)------> (4.-3)
the new center of the circle is (4,-3)
the new equation is
(x-4)</span>²+(y+3)²=3²
see the attached figure