Answer:
280-17=273
Step-by-step explanation:
because 80-17 equals 73 sooooooo add 200
Answer:
A. -7
Step-by-step explanation:
The y-intercept of a line is where the line <em>intercepts</em> the y-axis. The y-intercept is shown, in point form, (0,y), y being where the line intercepts the y-axis.
Answer:
the hourly rates are $8 and $10 respectively
Step-by-step explanation:
Given that
The generator rents for 6 hours and the total cost is $48
And, for another job The generator rents for 4 hours and the total cost is $40
We need to find out the hourly rates
For the first one
= $48 ÷ 6 hours
= $8
For the second one
= $40 ÷ 4 hours
= $10
Hence, the hourly rates are $8 and $10 respectively
Let's call the three numbers a, b, and c.
Now we can turn the information we are given into equations.
The sum of the three numbers is 26:
a + b + c = 26
Twice the first (2 times a) minus the second (2 times a minus b) is 2 less than the third:
2a - b = c - 2
The third is the second minus three times the first:
c = b - 3a
Counting what we have here, we now have three equations and three variables: enough to solve the whole system of equations.
The third equation gives us c directly, so we can start there and substitute into the second equation:
2a - b = (b - 3a) - 2
2a + 3a = b + b - 2
5a = 2b - 2
Let's get one of these variables on its own so we can continue with the substitution:
5a + 2 = 2b
b = (5a + 2) / 2
Now we have c in terms of a and b, and b in terms of just a. So let's use the first equation and substitute to find out what a is:
a + b + c = 26
a + (5a + 2) / 2 + (b - 3a) = 26
a + (5/2)a + 1 + (5a + 2) / 2 - 3a = 26
7/2a + 1 + 5/2a + 1 - 3a = 26
12/2a + 2 - 3a = 26
6a - 3a = 26 - 2
3a = 24
a = 8
At last, we have solved for one of the variables. Now, plug this into the equation for b to find b:
b = (5a + 2) / 2 = (5(8) + 2) / 2 = (40 + 2) / 2 = 42 / 2 = 21
Now we have a and b. Time to find c!
a + b + c = 26
(8) + (21) + c = 26
29 + c = 26
c = 26 - 29
c = -3
<span>So our values for a, b, and c are 8, 21, and -3.</span>
Answer:
there are 86,400 seconds in one day