C. cannot because the letters representing them are not the same
The volume of the cylinder is the amount of fruit juice it can contain.
The relationship between the volume and the surface area is:
![\mathbf{A = \pi (\sqrt[3]{\frac{V}{2\pi}})^2 + \frac{0.946}{(\sqrt[3]{\frac{V}{2\pi}})}}](https://tex.z-dn.net/?f=%5Cmathbf%7BA%20%3D%20%5Cpi%20%28%5Csqrt%5B3%5D%7B%5Cfrac%7BV%7D%7B2%5Cpi%7D%7D%29%5E2%20%2B%20%5Cfrac%7B0.946%7D%7B%28%5Csqrt%5B3%5D%7B%5Cfrac%7BV%7D%7B2%5Cpi%7D%7D%29%7D%7D)
The given parameter is:

The volume of a cylinder is calculated as:

Make h the subject

The surface area (A) of a cylinder is:

Substitute 


Differentiate

Set to 0

Rewrite as:

Multiply through by r^2

Solve for r
![\mathbf{r = \sqrt[3]{\frac{V}{2\pi}}}](https://tex.z-dn.net/?f=%5Cmathbf%7Br%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7BV%7D%7B2%5Cpi%7D%7D%7D)

So, we have:
![\mathbf{A = \pi (\sqrt[3]{\frac{V}{2\pi}})^2 + \frac{0.946}{(\sqrt[3]{\frac{V}{2\pi}})}}](https://tex.z-dn.net/?f=%5Cmathbf%7BA%20%3D%20%5Cpi%20%28%5Csqrt%5B3%5D%7B%5Cfrac%7BV%7D%7B2%5Cpi%7D%7D%29%5E2%20%2B%20%5Cfrac%7B0.946%7D%7B%28%5Csqrt%5B3%5D%7B%5Cfrac%7BV%7D%7B2%5Cpi%7D%7D%29%7D%7D)
Hence, the relationship between the volume and the surface area is:
![\mathbf{A = \pi (\sqrt[3]{\frac{V}{2\pi}})^2 + \frac{0.946}{(\sqrt[3]{\frac{V}{2\pi}})}}](https://tex.z-dn.net/?f=%5Cmathbf%7BA%20%3D%20%5Cpi%20%28%5Csqrt%5B3%5D%7B%5Cfrac%7BV%7D%7B2%5Cpi%7D%7D%29%5E2%20%2B%20%5Cfrac%7B0.946%7D%7B%28%5Csqrt%5B3%5D%7B%5Cfrac%7BV%7D%7B2%5Cpi%7D%7D%29%7D%7D)
Read more about surface areas and volumes at:
brainly.com/question/3628550
Answer:
If it has a half-life of 250 years then 250 half-lives will be 2,500 years!
Step-by-step explanation:
Answer:
x = 10.5
Step-by-step explanation:
(r)=x .
y =18.8 / 2 = 9.4 .
z= 4.7
pythaoroas
r² = y²+z²
r²= (9.4)²+(4.7)²
r²= 88.36 + 22.09
√r² = √110.45
r = 10.5
Answer:
The average temperature of the atmosphere outside the airplane is
.
Step-by-step explanation:
The average temperature of the atmosphere outside an airplane flying at an altitude of 12600 meters is computed by evaluating the linear function:


The average temperature of the atmosphere outside the airplane is
.