1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
taurus [48]
2 years ago
10

Ms. McCormick keeps a rectangular recycling bin for used paper in her classroom. The area of the bottom of the bin is 400 square

inches. Paper completely fills the bin to a height of 17 inches. What is the volume of paper in the recycling bin?
Mathematics
1 answer:
aniked [119]2 years ago
3 0

According to the dimensions given, the volume of paper in the recycling bin is of 6800 cubic inches.

<h3>What is the volume of a rectangular prism?</h3>

It is given by the multiplication of the base area by the height, that is:

V = S_bh

In this problem, we have that the measures in square inches and inches, respectively, are given by:

S_b = 400, h = 17

Hence:

V = 400 \times 17 = 6800

The volume of paper in the recycling bin is of 6800 cubic inches.

More can be learned about the volume of a rectangular prism at brainly.com/question/17223528

You might be interested in
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
Let f(x) = 5x – 3 and g(x) = -2x + 7. Find f(x) + g(x).
notka56 [123]

f(x) + g(x) = 5x - 3 - 2x + 7

               = 3x + 4

Hope this helps! If you have any questions, feel free to ask.

5 0
3 years ago
What is y-intercept?​
igor_vitrenko [27]

Answer:

The number  on the graph that touches the y-axis or the the c term. EX. 3x^2 + 2x -3. -3 is the y intercept

Step-by-step explanation:

6 0
3 years ago
In a statistics class, there are 22 juniors and 18 seniors. Of the juniors, 12 are females. Of the seniors, 11
castortr0y [4]

Answer:

a) 0.857

b) 0.571

c) 1

Step-by-step explanation:

18 juniors

10 seniors

6 female seniors

10-6 = 4 male seniors

12 junior males

18-12 = 6 junior female

6+6 = 12 female

4+12 = 16 male

A total of 28 students

The possibility of each union of events is obtained by summing the probabilities of the separated events and substracting the intersection. I will abbreviate female by F, junior by J, male by M, senior by S; So we have

P(J U F) = P(J) + P(F) - P(JF) = 18/28+12/28-6/28 = 24/28 = 0.857

P(S U F) = P(S) + P(F) - P(SF) = 10/28 + 12/28 - 6/28 = 16/28 = 0.571

P(J U S) = P(J) + P(S) - P(JS) = 18/28 + 10/28 - 0 = 1

Note that a student cant be Junior and Senior at the same time, so the probability of the combined event is 0. The probability of the union is 1 because every student is either Junior or Senior.

(Extra; but please give me brainliest

6 0
3 years ago
What is the equation of a line in slope-intercept form with a slope of -3/4 and a y-intercept of -2
Lisa [10]
The equation of that line is  [ <em>y = -3/4 x - 2</em> ].
5 0
3 years ago
Other questions:
  • What is 67,000 closer to.
    12·2 answers
  • Which function in vertex form is equivalent to f(x) = x2 + 6x + 3?
    15·2 answers
  • Someone help me do this question step by step please? ASAP
    7·1 answer
  • Andre bought pencils in packs of 8. He gave 2 pencils to his sister and 3 pencils from each pack to his friends. The expression
    12·1 answer
  • HEY SO MY MATH GRADE IS AN F SO IF ANYONE IS LIKE A WIZ AT MATH PLEASE HELP MEEEEEE
    9·1 answer
  • Suppose
    9·1 answer
  • 19,129 divided by 37
    13·1 answer
  • Geometry question<br><br> No explanation necessary, I need an answer in two words or less
    10·1 answer
  • Ruby had 30 dollars to spend on 3 gifts. She spent 9 7 10 dollars on gift A and 5 2 5 dollars on gift B. How much money did she
    10·1 answer
  • What is the area of a rectangle with vertices at (−3, −1), (1, 3), (3, 1), and (−1, −3)?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!