The first answer of the missing blank is 4/5.
The second answer of the missing blank is 2.
The third answer of the missing blank is 25.
*For all of these solutions, I will be using the common rules for logarithms.*
Solution for the first question:
Log9^4/5 must equal log9^4-log9^5, or it could also equal the more proper version, which is simplified: 2log9^2-log9^5.
Solution for the second question:
Log3^22 must equal log3^11+log3^2, if you break it down.
Solution for the third question:
Log9^25 must equal 2log9^5 because it will be like this when simplifying it:
log9^25=2log9^5
log9^5²=2log9^5
2log9^5=2log9^5
These are all of the step-by-step procedures for all three of these given questions. Anyways, I hope that this helped you!
Answer:
y + 16 = 3(x + 5)
Step-by-step explanation:
When you write an equation in point-slope form, you only need two things: a point and a slope.
Given:
The standard point-slope equation is
y - y₁ = m(x - x₁)
Plug in what you know.
y - (-16) = 3(x - (-5))
Simplify.
y + 16 = 3(x + 5)
This is your equation.
Learn with another example:
brainly.com/question/24436844
Answer:
Check the explanation
Step-by-step explanation:
Here we have to first of all carry out dependent sample t test. consequently wore goggles first was selected at random for the reason that the reaction time in an emergency taken with goggles would be greater than the amount of reaction time in an emergency taken with not so weakened vision. So that we will get the positive differences d = impaired - normal
b)
To find 95% confidence interval first we need to find sample mean and sample sd for difference d = impaired minus normal.
We can find it using excel that is in the first attached image below,
Therefore sample mean
= 0.98
Sample sd
= 0.3788
To find 95% Confidence interval we can use TI-84 calculator,
Press STAT ----> Scroll to TESTS ---- > Scroll down to 8: T Interval and hit enter.
Kindly check the attached image below.
Therefore we are 95% confident that mean difference in braking time with impaired vision and normal vision is between ( 0.6888 , 1.2712)
Conclusion : As both values in the interval are greater than 0 , mean difference impaired minus normal is not equal to 0
There is significant evidence that there is a difference in braking time with impaired vision and normal vision at 95% confidence level .
Answer:
Around 17.716 inches
Step-by-step explanation: