Answer:
v =
m/s
Explanation:
The position vector r of the bug with linear velocity v and angular velocity ω in the laboratory frame is given by:

The velocity vector v is the first derivative of the position vector r with respect to time:
![\overrightarrow{v}=[vcos(\omega t)-\omega vtsin(\omega t)]\hat{x}+[vsin(\omega t)+\omega vtcos(\omega t)]\hat{y}](https://tex.z-dn.net/?f=%5Coverrightarrow%7Bv%7D%3D%5Bvcos%28%5Comega%20t%29-%5Comega%20vtsin%28%5Comega%20t%29%5D%5Chat%7Bx%7D%2B%5Bvsin%28%5Comega%20t%29%2B%5Comega%20vtcos%28%5Comega%20t%29%5D%5Chat%7By%7D)
The given values are:


Normal force for the rock because that makes an object stable at its position.
static friction because micro-welts hold its particle on its position so it doesn't change in position by a potential energy. Gravity makes it stay on the ground because its force attraction between an object and the earth.
Hope this helps <span />
<span>Shading.
When light hits an opaque surface some is absorbed, the rest is reflected, The reflected light is called shading. Reflection is not simple and varies with material.
The surface’s structure defines the details of reflection. Variations produce anything from bright specular reflection</span>