Answer:
a) P = 1240 lb/ft^2
b) P = 1040 lb/ft^2
c) P = 1270 lb/ft^2
Explanation:
Given:
- P_a = 2216.2 lb/ft^2
- β = 0.00357 R/ft
- g = 32.174 ft/s^2
- T_a = 518.7 R
- R = 1716 ft-lb / slug-R
- γ = 0.07647 lb/ft^3
- h = 14,110 ft
Find:
(a) Determine the pressure at this elevation using the standard atmosphere equation.
(b) Determine the pressure assuming the air has a constant specific weight of 0.07647 lb/ft3.
(c) Determine the pressure if the air is assumed to have a constant temperature of 59 oF.
Solution:
- The standard atmospheric equation is expressed as:
P = P_a* ( 1 - βh/T_a)^(g / R*β)
(g / R*β) = 32.174 / 1716*0.0035 = 5.252
P = 2116.2*(1 - 0.0035*14,110/518.7)^5.252
P = 1240 lb/ft^2
- The air density method which is expressed as:
P = P_a - γ*h
P = 2116.2 - 0.07647*14,110
P = 1040 lb/ft^2
- Using constant temperature ideal gas approximation:
P = P_a* e^ ( -g*h / R*T_a )
P = 2116.2* e^ ( -32.174*14110 / 1716*518.7 )
P = 1270 lb/ft^2
Answer:
a).
b).
c.) It must be at the bottom
Explanation:
Given:
Volume flow
Well depp
a.
The power output of the pum
b.
The pressure of difference the pum
Δ
Δ
c.
It must be at the bottom since the pressure difference is greater than atmospheric pressure, so it wouldn't be able to lift the water all the way
The force that the book exerts on the table is a normal force, not a weight force. (The book's weight doesn't act on the table, it acts on the book.) It's equal in magnitude to the weight of the book, again, because of the first law.
Answer:
a) 1111.0 seconds
b) 833.3 s
c) Because of proportions
Explanation:
a) Total time of round trip is the sum of time upriver and time downriver
Time upriver is calculated with the net speed of student and 0.500 km:
(Becareful with units 0.5 km= 500m) Similarly of downriver:
So the sum is:
b) Still water does not affect student speed, so total time would be simply:
c) For the upriver trip, student moved half the distance in half speed of the calculation in b), so it kept the same ratio and therefore, same time. So the aditional time is actually the downriver.
125 cm^3 ——————)-)-()-)))-