Distances in 2- and 3-dimensions (and even higher dimensions) can be found using the Pythagorean theorem. The straight-line distance can be considered to be the hypotenuse of a right triangle whose sides are the horizontal and vertical differences between the coordinates.
Here, you have A = (0, 0) and B = (3, 6). The horizontal distance between the points is ...
... 3 - 0 = 3 . . . . the difference of x-coordinates
The vertical distance between the points is ...
... 6 - 0 = 6 . . . . the difference of y-coordinates
Then the straight-line distance (d) between the points is found from the Pythagorean theorem, which tells you ...
... d² = 3² + 6²
... d = √(9 + 36) = √45 ≈ 6.7 . . . units
Answer:
502
Step-by-step explanation
108 has the numbers 0, 1, and 8 which added together totals 9
603 has the numbers 0, 3, and 6 which added together totals 9
360 has the numbers 0, 3, and 6 which added together totals 9
502 has the numbers 0, 2, and 5 which equal 7
502 is the odd one out
Given the coordinates of the three vertices of a triangle ABC,
the centroid coordinates are (x1+x2+x3)/3, (y1+y2+y3)/3
<span>so (-4+2+0)/3=-2/3, ]2+4+(-2)]/3=4/3
so the coordinates are (-2/3, 4/3)</span>
Answer:
93.5 square units
Step-by-step explanation:
Diameter of the Circle = 12 Units
Therefore:
Radius of the Circle = 12/2 =6 Units
Since the hexagon is regular, it consists of 6 equilateral triangles of side length 6 units.
Area of the Hexagon = 6 X Area of one equilateral triangle
Area of an equilateral triangle of side length s = 
Side Length, s=6 Units

Area of the Hexagon
