<h3>
Answer: 33%</h3>
===========================================================
Explanation:
1/3 converts to the decimal form 0.333333... where the 3's go on forever
5/3 is a similar story but 5/3 = 1.666666.... where the '6's go on forever
The notation
indicates that the 6's go on forever.
So, 
The horizontal bar tells us which digits repeat. As another example, 
The three dots just mean "keep this pattern going forever".
----------
Everything mentioned so far has the decimal portions go on forever repeating some pattern over and over.
The only one that doesn't do this is 33% which converts to the decimal form 0.33
The value 0.33 is considered a terminating decimal since "terminate" means "stop". So this is the value that doesn't fit in with the other three items mentioned.
Answer: Not sure
Step-by-step explanation: A is wrong because they are parallel in one is on the top to the right and 1 is on the bottom. sorry thats all i know :(
<h2>
Answer:</h2>
The answer to your question is: (4 x 10^-1)
Answer:
Step-by-step explanation:-16x^2 + 24x + 16 = 0.
A. Divide by 8:
-2x^2 + 3x + 2 = 0, A*C = -2*2 = -4 = -1 * 4. Sum = -1 + 4 = 3 = B, -2x^2 + (-x+4x) + 2 = 0,
(-2x^2-x) + (4x+2) = 0,
-x(2x+1) + 2(2x+1) = 0,
(2x+1)(-x+2) = 0, 2x+1 = 0, X = -1/2. -x+2 = 0, X = 2.
X-intercepts: (-1/2,0), (2,0).
B. Since the coefficient of x^2 is negative, the parabola opens downward. Therefore, the vertex is a maximum.
Locate the vertex: h = Xv = -B/2A = -24/-32 = 3/4, Plug 3/4 into the given Eq to find k(Yv). K = -16(3/4)^2 + 16(3/4) + 16 = 19. V(h,k) = V(3/4,19).
C. Choose 3 points above and below the vertex for graphing. Include the points calculated in part A which shows where the graph crosses the x-axis.
That question is accompanied by these answer choices:
<span>A. The scale is accurate but not precise.
B. The scale is precise but not accurate.
C. The scale is neither precise nor accurate.
D. The scale is both accurate and precise.
Then you need to distinguish between accuracy and precision.
Accuracy refers to the closeness of the measure to the real value, while precision, in this case, refers to the level of significant figures that the sacle report.
The fact that the scale reports the number with 4 significant figures means that it is very precise, but the fact that the result is not so close to the real value as the number of significan figures pretend to be, means that the scale is not accurate.
So, the answer is that the scale is precise but not accurate (the option B</span>