John’s calculations are not correct. He compared the exact value to the absolute error. The absolute error should be in the numerator and the exact value in the denominator.
we know the circumference shown for that picture is π miles, what would it be for the diameter? namely how long is the diameter of that circle whose circumference is π miles?
![\bf \textit{circumference of a circle}\\\\ C=\pi d~~ \begin{cases} d=diameter\\ \cline{1-1} C=\pi \end{cases}\implies \pi =\pi d\implies \cfrac{~~\begin{matrix} \pi \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}{~~\begin{matrix} \pi \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}=d\implies 1=d](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bcircumference%20of%20a%20circle%7D%5C%5C%5C%5C%20C%3D%5Cpi%20d~~%20%5Cbegin%7Bcases%7D%20d%3Ddiameter%5C%5C%20%5Ccline%7B1-1%7D%20C%3D%5Cpi%20%5Cend%7Bcases%7D%5Cimplies%20%5Cpi%20%3D%5Cpi%20d%5Cimplies%20%5Ccfrac%7B~~%5Cbegin%7Bmatrix%7D%20%5Cpi%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7B~~%5Cbegin%7Bmatrix%7D%20%5Cpi%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%3Dd%5Cimplies%201%3Dd)
Answer:
19.193 million
Step-by-step explanation:
Put the given value in the formula and do the arithmetic.
P(220) = 19.71/(1 +61.22e^(-0.03513·220))
P(220) = 19.71/(1 +61.22e^-7.7286) = 19.71/(1 +0.02694046)
P(220) ≈ 19.193 . . . million
Answer: 1/2
Step-by-step explanation:
Answer:
n = 6
a = 6 mm
r = 5.19615 mm
R = 6 mm
A = 93.53 mm2 times $3 = $280.59
P = 36 mm
x = 120 °
y = 60 °
r = inradius (apothem)
R = circumradius
a = side length
n = number of sides
x = interior angle
y = exterior angle
A = area
P = perimeter
π = pi = 3.14159...
√ = square root