Answer:
$289 I think
Step-by-step explanation:
$289 I think
sorry if I am wrong
Answer: Hello mate!
The partition of a set is defined as a partition of the set into a nonempty subset, where the set itself is a subset of himself, then the set is a partition of himself.
a) in this we have a set of two objects; A = (1,2) the partitions of this set are: (∅), (1), (2) and (1,2). Where (∅) is the null set.
b) Now we have a set of three objects; B = (a,b,c) the partitions of this set are: (∅), (a), (b), (c), (a,b), (a,c), (b,c), (a,b,c)
Answer:
Solutions are 2, -1 + 0.5 sqrt10 i and -1 - 0.5 sqrt10 i
or 2, -1 + 1.58 i and -1 - 1.58i
(where the last 2 are equal to nearest hundredth).
Step-by-step explanation:
The real solution is x = 2:-
x^3 - 8 = 0
x^3 = 8
x = cube root of 8 = 2
Note that a cubic equation must have a total of 3 roots ( real and complex in this case). We can find the 2 complex roots by using the following identity:-
a^3 - b^3 = (a - b)(a^2 + ab + b^2).
Here a = x and b = 2 so we have
(x - 2)(x^2 + 2x + 4) = 0
To find the complex roots we solve x^2 + 2x + 4 = 0:-
Using the quadratic formula x = [-2 +/- sqrt(2^2 - 4*1*4)] / 2
= -1 +/- (sqrt( -10)) / 2
= -1 + 0.5 sqrt10 i and -1 - 0.5 sqrt10 i
Answer:

You gave the explicit form.
Step-by-step explanation:
You gave the explicit form.
The recursive form is giving you a term in terms of previous terms of the sequence.
So the recursive form of a geometric sequence is
and they also give a term of the sequence; like first term is such and such number. All this says is to get a term in the sequence you just multiply previous term by the common ratio.
r is the common ratio and can found by choosing a term and dividing by the term that is right before it.
So here r=-3 since all of these say that it does:
-54/18
18/-6
-6/2
If these quotients didn't match, then it wouldn't be geometric.
Anyways the recursive form for this geometric sequence is

Yea it is.4\5 is greater than 2