1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iogann1982 [59]
2 years ago
7

0%5C%3A%202x%20%5C%3A%20%20Find%20%5Cfrac%7Bdy%7D%7Bdx%7D%20" id="TexFormula1" title=" \sf \large \: If \: y = Sin x \: * Cos \: 2x \: Find \frac{dy}{dx} " alt=" \sf \large \: If \: y = Sin x \: * Cos \: 2x \: Find \frac{dy}{dx} " align="absmiddle" class="latex-formula">
Thanku!​
Mathematics
2 answers:
DIA [1.3K]2 years ago
8 0

Answer:

  • cos (x) cos (2x) - 2sin(x) sin(2x)

Solution:

(See the solution in the photo)

dybincka [34]2 years ago
4 0

Answer:

\sf -5\cos \left(x\right)+6\cos ^3\left(x\right)

explanation:

\sf y  =  sin(x) * cos(2x)

\rightarrow \sf \frac{d}{dx}\left(sin\left(x\right)\ * \:\:cos\left(2x\right)\right)

\sf \bold {Apply\:the\:Product\:Rule}:\quad \left(f\cdot g\right)'=f\:'\cdot g+f\cdot g'

\rightarrow  \sf \frac{d}{dx}\left(\sin \left(x\right)\right)\cos \left(2x\right)+\frac{d}{dx}\left(\cos \left(2x\right)\right)\sin \left(x\right)

\sf \bold{ Apply \ differentiation \ rule \ \  \ : }   \ \ \ sin(x) = cos(x)  \ \ and  \ \ cos(x) = -sin(x)

\rightarrow  \sf \cos \left(x\right)\cos \left(2x\right)+\left(-\sin \left(2x\right)\ * \:2\right)\sin \left(x\right)

\rightarrow  \sf \cos \left(x\right)\cos \left(2x\right)\left-2\sin \left(2x\right)\sin \left(x\right)

\sf \bold {use \ the \ formulae \  : \  cos(2x) = 2cos^2(x) - 1} \ {and}  \ \ \sf \bold{sin(x) = 2 sin x cos x}

\rightarrow \sf cos(x) (2cos^2 (x) -1) -2(2sin(x)cos(x)sin(x))

\rightarrow \sf 2cos^3 (x) - cos(x) - 4sin^2(x) cos(x)

\rightarrow  \sf -5\cos \left(x\right)+6\cos ^3\left(x\right)

You might be interested in
Hello, I asked help for this problem several times to no answer. I dont understand it and can use any help. Please, and thank yo
Oduvanchick [21]

Check the picture below.

let's recall that a straight-line has 180°, and that sum of all interior angles in a triangle is also 180°.

3 0
3 years ago
Using the function f(x) = -3 x -5, calculate f(-7)
KonstantinChe [14]
Answer: X=16

Explanation: when you plug in -7 for x in the equation you have and just multiply it by -3 you will get 21 then subtract 5 and that will give yo 16
7 0
3 years ago
Factor COMPLETELY:
Elena L [17]
1. Find the greatest common factor (GCF)
What is the largest number that divides evenly into 4x^2, -16x^4, and 10x^5?
It is 2.
What is the highest degree of x that divides evenly into 4x^2, -16x^4, and 10x^5?
It is x^2.
Multiply the results above, the GCF = 2x^2

2. Factor out the GCF (Write the GCF first. Then, in parentheses, divide each term by the GCF.)
2x^2(4x^2/2x^2 + -16x^4/2x^2 + 10x^5/2x^2)

3. Simplify each term in parentheses
2x(2-8x^2+5x^3)

Have a nice day :D
6 0
4 years ago
Between what two consecutive integers is 17?
Marina CMI [18]

Answer:

No solution

Step-by-step explanation:

17 is an integer that is in between the integers of 16 and 18

16 and 18 are not consecutive integers.

No solution

8 0
3 years ago
In arithmetic sequence tn find: S10, if t2=5 and t8=15
makkiz [27]

Given:

\bold{t_2=5}\\\\\bold{t_8=15}\\\\

To find:

\bold{T_n=?}\\\\\bold{S_{10}=?}

Solution:

\to \bold{t_2=5}\\\\  \bold{a+d=5} \\\\  \bold{a=5-d} ................(i)\\\\ \to \bold{t_8=15}\\\\ \bold{a+ 7d=15}.................(ii)\\\\

Putting the equation (i) value into equation (ii):

\to \bold{5-d+7d=15}\\\\\to \bold{5+6d=15}\\\\\to \bold{6d=15-5}\\\\\to \bold{6d=10}\\\\\to \bold{d=\frac{10}{6}}\\\\\to \bold{d=\frac{5}{3}}\\\\

Putting the value of (d) into equation (i):

\to \bold{a=5-\frac{5}{3}}\\\\\to \bold{a=\frac{15-5}{3}}\\\\\to \bold{a=\frac{10}{3}}\\\\

Calculating the \bold{t_n :}

\to \bold{t_n=a+(n-1)d}\\\\\to \bold{t_n=\frac{10}{3}+(n-1)\frac{5}{3}}\\\\\to \bold{t_n=\frac{10}{3}+\frac{5}{3}n-\frac{5}{3}}\\\\\to \bold{t_n=\frac{10}{3}-\frac{5}{3} +\frac{5}{3}n}\\\\\to \bold{t_n=\frac{10-5}{3} +\frac{5}{3}n}\\\\\to \bold{t_n=\frac{5}{3} +\frac{5}{3}n}\\\\ \to \bold{t_n=\frac{5}{3}(1+n)}\\\\

Formula:

\bold{S_n = \frac{n}{2}[2a + (n - 1)d ] }\\

Calculating the \bold{S_{10}} :

\to \bold{S_{10} = \frac{10}{2}[2\frac{10}{3} + (10- 1)\frac{5}{3} ] }\\\\\to \bold{S_{10} = 5[\frac{20}{3} + (9)\frac{5}{3} ] }\\\\\to \bold{S_{10} = 5[\frac{20}{3} + 9 \times \frac{5}{3} ] }\\\\\to \bold{S_{10} = 5[\frac{20}{3} + 3\times 5 ] }\\\\\to \bold{S_{10} = 5[\frac{20}{3} + 15 ] }\\\\\to \bold{S_{10} = 5[\frac{20+ 45}{3} ] }\\\\\to \bold{S_{10} = 5[\frac{65}{3} ] }\\\\\to \bold{S_{10} = 5 \times \frac{65}{3}  }\\\\\to \bold{S_{10} =  \frac{325}{3}  }\\\\\to \bold{S_{10} =108.33 }

Therefore, the final answer is  " \bold{\frac{5}{3}(1+n)\ and\ 108.33}"

Learn more:

brainly.com/question/11853909

7 0
3 years ago
Other questions:
  • Factor the four-term polynomial.
    7·2 answers
  • A triangle has 2 sides that equal 6 inches. The other side equals 3 inches. What kind of triangle is it?
    13·2 answers
  • The graph of the function f(x) is shown below.
    15·1 answer
  • 7/8*16/21<br><br> i need help
    9·2 answers
  • The median of the following data will ________________________ when you in add a data value of 1? (DO MATH on paper!) 8, 9, 9, 4
    9·1 answer
  • Find the value of X.
    6·2 answers
  • I dont know how to find x
    7·1 answer
  • A slope of -2 and a y-intercept of -7
    15·2 answers
  • Last year 300 people attended a play with ticket price of $8. The school estimates that 20 fewer people attend for each $1 incre
    15·1 answer
  • What is the length of segment ac? on a coordinate plane, line a c has points (3, negative 1) and (negative 5, 5).
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!