(4). If we break down this piecewise function, we have 3 main expressions to deal with, 'h(x) = 5 if {x ≥ 4}' (represented by the green graph) 'h(x) = x if {0 ≤ x ≤ 4}' (represented by the blue graph) and 'h(x) = 1 / 2x + 2 if {x < 0}' (represented by the red graph).
Take a look at the attachment below for your graph of these 3 functions / expressions.
(5). For this part we want to determine the average rate of change of the function f(x) = 4x² - 5x - 8 over the interval [- 2,3]. Remember that to calculate average rate of change between the 2 points we use the following formula...
f(b) - f(a) / b - a,
f(3) = 4(3)² - 5(3) - 8 = 4(9) - 15 - 8 = 36 - 15 - 8 = 13,
f(- 2) = 4(- 2)² - 5(- 2) - 8 = 4(4) + 10 - 8 = 16 + 10 - 8 = 18
13 - 18 / 3 - (- 2) = - 5 / 5 = - 1
Therefore the average rate of change of the function f(x) = 4x² - 5x - 8 over the interval [- 2,3] will be - 1.
This question cannot be answered because you do not show us the graphs
You can do this with foil
F(which is the first term of both factors): 4*sqrt(7)
O(outside terms of both factors first and last) 4*sqrt(2)
I (Inside terms 2nd and 3rd) = - sqrt(3) sqrt(7) = - sqrt(21)
L (Last term in each of the factors) - sqrt(3)*sqrt(2) = - sqrt(6)
Combine terms: 4*sqrt(7) + 4*sqrt(2) - sqrt(21) - sqrt(6) <<<< answer.
There are a total of 4 quarters and 16 nickels.