A. Linear y= -x - 1 would be the answer
SOLUTIONS
Solve a given equations or algebraic symbols?
![\begin{gathered} f(x)=x^2+2x \\ g(x)=1-x^2 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20f%28x%29%3Dx%5E2%2B2x%20%5C%5C%20g%28x%29%3D1-x%5E2%20%5Cend%7Bgathered%7D)
(A)
![\begin{gathered} (f+g)(x)=(x^2+2x)+(1-x^2) \\ collect\text{ like terms} \\ x^2-x^2+2x+1 \\ (f+g)(x^)=2x+1 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%28f%2Bg%29%28x%29%3D%28x%5E2%2B2x%29%2B%281-x%5E2%29%20%5C%5C%20collect%5Ctext%7B%20like%20terms%7D%20%5C%5C%20x%5E2-x%5E2%2B2x%2B1%20%5C%5C%20%28f%2Bg%29%28x%5E%29%3D2x%2B1%20%5Cend%7Bgathered%7D)
(B)
![\begin{gathered} (f-g)(x)=(x^2+2x)-(1-x^2) \\ =x^2+2x-1+x^2 \\ =x^2+x^2+2x-1 \\ (f-g)(x)=2x^2+2x-1 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%28f-g%29%28x%29%3D%28x%5E2%2B2x%29-%281-x%5E2%29%20%5C%5C%20%3Dx%5E2%2B2x-1%2Bx%5E2%20%5C%5C%20%3Dx%5E2%2Bx%5E2%2B2x-1%20%5C%5C%20%28f-g%29%28x%29%3D2x%5E2%2B2x-1%20%5Cend%7Bgathered%7D)
(C)
![\begin{gathered} fg(x)=(x^2+2x)(1-x^2) \\ =x^2-x^4+2x-2x^3 \\ fg(x)=-x^4-2x^3+x^2+2x \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20fg%28x%29%3D%28x%5E2%2B2x%29%281-x%5E2%29%20%5C%5C%20%3Dx%5E2-x%5E4%2B2x-2x%5E3%20%5C%5C%20fg%28x%29%3D-x%5E4-2x%5E3%2Bx%5E2%2B2x%20%5Cend%7Bgathered%7D)
(D)
<span>(5x^7 y^2)(-4x^4 y^5) =-20x^a y^b
</span><span>
solve this:
(5x^7 y^2)(-4x^4 y^5)
= -20 x^(7 + 4) y^(2 + 5)
= -20 x^11 y^7
answer
</span>A) a=11, b=7
Answer:
triangle KLM
Step-by-step explanation:
Take one point on the initial triangle and move it according to the given translation to locate the image. I used point G. Its coordinate plot is at
(2,3). I perform the operation of the given translation to this. (X1-X2, y1-y2).
So, (2-1, 3-8). The new coordinates will be (1,-5) and the only triangle with these coordinates is triangle KLM.