1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveticcg [70]
2 years ago
6

BASEBALL Tonisha hit a baseball into the air with an initial upward

Mathematics
1 answer:
adoni [48]2 years ago
6 0

Answer:

I like baseball

Step-by-step explanation:

because I like baseball

You might be interested in
PLEASE HELP WITH THIS !! I DON'T UNDERSTAND
zaharov [31]
The general form and standard form might be mixed up but I know for sure one of the equations is right

8 0
3 years ago
5. Find the surface area of the cone. Round to<br> the nearest hundredth.<br> 2 ft<br> 6 ft
den301095 [7]

Answer:

52.3m^2

Step-by-step explanation:

Use these formulas

A=\pi rl+\pi r^2\\l=\sqrt{r^2+h^2}

Now solve

A=\pi r(r+\sqrt{h^2+r^2} )\\=\pi *2*(2\sqrt{6^2+2^2} )\\=52.3m^2

4 0
4 years ago
What 4p-5(p+6)simplified
V125BC [204]

Answer: -p - 30

Step-by-step explanation:

3 0
3 years ago
The sum of three numbers is 132 . the third number is 7 less than the first. the second number is 3 times the third. what are th
katovenus [111]
X+y+z = 132
x = 7+z
y = 3z

(7+z)+3z+z = 132
5z = 132-7
z = 125/5

z = 25 <=====

x = 7+z
x = 7 + 25
x = 39 <=====

y = 3z
y = 3 × 25
y = 75 <=====

hope it helps :)

8 0
4 years ago
Solve the above que no. 55
aleksandr82 [10.1K]

Answer:

Let \left(1+\frac{1}{\tan^{2}A} \right)\cdot \left(1+\frac{1}{\cot^{2}A} \right), we proceed to prove the trigonometric expression by trigonometric identity:

1) \left(1+\frac{1}{\tan^{2}A} \right)\cdot \left(1+\frac{1}{\cot^{2}A} \right) Given

2) \left(1+\frac{\cos^{2}A}{\sin^{2}A} \right)\cdot \left(1+\frac{\sin^{2}A}{\cos^{2}A} \right)   \tan A = \frac{1}{\cot A} = \frac{\sin A}{\cos A}

3) \left(\frac{\sin^{2}A+\cos^{2}A}{\sin^{2}A} \right)\cdot \left(\frac{\cos^{2}A+\sin^{2}A}{\cos^{2}A} \right)    

4) \left(\frac{1}{\sin^{2}A} \right)\cdot \left(\frac{1}{\cos^{2}A} \right)    \sin^{2}A+\cos^{2}A = 1

5) \frac{1}{\sin^{2}A\cdot \cos^{2}A}

6) \frac{1}{\sin^{2}A\cdot (1-\sin^{2}A)}    \sin^{2}A+\cos^{2}A = 1

7) \frac{1}{\sin^{2}A-\sin^{4}A} Result

Step-by-step explanation:

Let \left(1+\frac{1}{\tan^{2}A} \right)\cdot \left(1+\frac{1}{\cot^{2}A} \right), we proceed to prove the trigonometric expression by trigonometric identity:

1) \left(1+\frac{1}{\tan^{2}A} \right)\cdot \left(1+\frac{1}{\cot^{2}A} \right) Given

2) \left(1+\frac{\cos^{2}A}{\sin^{2}A} \right)\cdot \left(1+\frac{\sin^{2}A}{\cos^{2}A} \right)   \tan A = \frac{1}{\cot A} = \frac{\sin A}{\cos A}

3) \left(\frac{\sin^{2}A+\cos^{2}A}{\sin^{2}A} \right)\cdot \left(\frac{\cos^{2}A+\sin^{2}A}{\cos^{2}A} \right)    

4) \left(\frac{1}{\sin^{2}A} \right)\cdot \left(\frac{1}{\cos^{2}A} \right)    \sin^{2}A+\cos^{2}A = 1

5) \frac{1}{\sin^{2}A\cdot \cos^{2}A}

6) \frac{1}{\sin^{2}A\cdot (1-\sin^{2}A)}    \sin^{2}A+\cos^{2}A = 1

7) \frac{1}{\sin^{2}A-\sin^{4}A} Result

4 0
3 years ago
Other questions:
  • Write two equivalent ratios 6/5
    15·2 answers
  • What is the formula for the x coordinate of the vertex of the parabola?
    12·1 answer
  • The area of parallelogram JKLM is 87.5 square feet. Its base is 14 feet. what is the height of parallelogram JKLM in feet?
    7·1 answer
  • May somebody please help me on this
    9·1 answer
  • HELPPP, please:) super easy
    9·2 answers
  • Can someone answer this question please WBA’s wee it correctly if it’s correct I will mark you brainliest
    11·1 answer
  • The radius is 6 and the height is 15 what is the volume in terms of pi
    9·1 answer
  • Which graph correctly shows a population that has reached its carrying capacity?
    15·2 answers
  • Find the area of this triangle.
    9·1 answer
  • Rectangular equation for the curve whose parametric equations are x = 2cosθ, y = cos2θ.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!