Answer:
Step-by-step explanation:
6>x+7
or -x>7-6
or -x>1
x<-1
First, you have to find the equation of the perpendicular bisector of this given line.
to do that, you need the slope of the perpendicular line and one point.
Step 1: find the slope of the given line segment. We have the two end points (10, 15) and (-20, 5), so the slope is m=(15-5)/(10-(-20))=1/3
the slope of the perpendicular line is the negative reciprocal of the slope of the given line, m=-3/1=-3
step 2: find the middle point: x=(-20+10)/2=-5, y=(15+5)/2=10 (-5, 10)
so the equation of the perpendicular line in point-slope form is (y-10)=-3(x+5)
now plug in all the given coordinates to the equation to see which pair fits:
(-8, 19): 19-10=9, -3(-8+5)=9, so yes, (-8, 19) is on the perpendicular line.
try the other pairs, you will find that (1,-8) and (-5, 10) fit the equation too. (-5,10) happens to be the midpoint.
<u>Explanation:</u>
a) First, note that the Type I error refers to a situation where the null hypothesis is rejected when it is actually true. Hence, her null hypothesis would be H0: mean daily demand of her clothes in this region should be greater than or equal to 100.
The implication of Type I error in this case is that Mary <u>rejects</u> that the mean daily demand of her clothes in this region is greater than or equal to 100 when it is actually true.
b) While, the Type II error, in this case, is a situation where Mary accepts the null hypothesis when it is actually false. That is, Mary <u>accepts</u> that the mean daily demand of her clothes in this region is greater than or equal to 100 when it is actually false.
c) The Type I error would be important to Mary because it shows that she'll be having a greater demand (which = more sales) for her products despite erroneously thinking otherwise.