Answer:
a) Recommended order quantity = 79.84 = 80
b) recorder point = 35
Safety stock = 10
Safety stock cost = $0/year
ci) P(stock out/cycle) = 0.1587
cii) Number of stock outs/ year = 2
Step-by-step explanation:
The pictures attached show a clear explanation of all the processes.
Answer:
the slope of MN= -5-1/3-(-6)=-2/3
two lines are parallel>> slopes are equal
equation of line = (y-y'=m(x-x'))
therefore, y-1= -2/3(x-6)
y-1 = -2/3x + 4
y+2/3x=5
Answer:
6.31 mi
Step-by-step explanation:
The diagram below explains the solution better.
From the diagram,
C = starting point of the race.
A = end of the first part of the race.
B = end of the race.
Using Cosine rule, we can find the straight-line distance between the starting point and the end of the race.
Cosine rule states that:
![a^2 = b^2 + c^2 - 2bc[cos(A)]](https://tex.z-dn.net/?f=a%5E2%20%3D%20b%5E2%20%2B%20c%5E2%20-%202bc%5Bcos%28A%29%5D)
where A = angle A = <A
Given that
b = 5.2 miles
c = 2.0 miles
<A = 115° (from the diagram)
Hence,
![a^2 = 5.2^2 + 2.0^2 - 2*5.2*2.0[cos(115)]\\\\a^2 = 27.04 + 4 - 20.8[cos(115)]\\\\a^2 = 31.04 + 8.79\\\\a^2 = 39.83\\\\a = \sqrt{39.83}\\ \\a = 6.31 mi](https://tex.z-dn.net/?f=a%5E2%20%3D%205.2%5E2%20%2B%202.0%5E2%20-%202%2A5.2%2A2.0%5Bcos%28115%29%5D%5C%5C%5C%5Ca%5E2%20%3D%2027.04%20%2B%204%20-%2020.8%5Bcos%28115%29%5D%5C%5C%5C%5Ca%5E2%20%3D%2031.04%20%2B%208.79%5C%5C%5C%5Ca%5E2%20%3D%2039.83%5C%5C%5C%5Ca%20%3D%20%5Csqrt%7B39.83%7D%5C%5C%20%5C%5Ca%20%3D%206.31%20mi)
The straight-line distance between the starting point and the end of the race is 6.31 mi
Answer:
NO this set is not equivalent
Step-by-step explanation:
Okay the way you find out if a pair of ratios are equal is you would divide the denominator and nominator with each other, so: 13/7 and 9/4. But sense the answer would be in decimal form and cant be simplified this wouldnt be considered equivalent. Also if you divide 7 by 4 you get a different answer than when you do 13 divided 9.
The parabolic motion is an illustration of a quadratic function
The equation that models that path of the rocket is y = -16/31x^2 + 256/31x - 880/31
<h3>How to model the function?</h3>
Given that:
x stands for time and y stands for height in feet
So, we have the following coordinate points
(x,y) = (5,0), (11,0) and (10,80)
A parabolic motion is represented as:
y =ax^2 + bx + c
At (5,0), we have:
25a + 5b + c = 0
c= -25a - 5b
At (11,0), we have:
121a + 11b + c = 0
Substitute c= -25a - 5b
121a + 11b -25a - 5b = 0
Simpify
96a + 6b = 0
At (10,80), we have:
100a + 10b + c = 80
Substitute c= -25a - 5b
100a + 10b - 25a -5b = 80
75a -5b = 80
Divide through by 5
15a -b = 16
Make b the subject
b = 15a + 16
Substitute b = 15a + 16 in 96a + 6b = 0
96a + 6(15a + 16) = 0
Expand
96a + 90a + 96 = 0
This gives
186a = -96
Solve for a
a = -16/31
Recall that:
b = 15a + 16
So, we have:
b = -15 * 16/31 + 16
b =-240/31 + 16
Take LCM
b =(-240 + 31 * 16)/31
[tex]b =256/31
Also, we have:
c= -25a - 5b
This gives
c= 25*16/31 - 5 * 256/31
Take LCM
c= -880/31
Recall that:
y =ax^2 + bx + c
This gives
y = -16/31x^2 + 256/31x - 880/31
Hence, the equation that models that path of the rocket is y = -16/31x^2 + 256/31x - 880/31
Read more about parabolic motion at:
brainly.com/question/1130127