It is currently organised by the increasing atomic # based on the actual nuclear charge of the elements
Answer:
2) f = 0.707 Hz
Explanation:
Given m₁ = 1.0 kg , f₁ = 1.0 Hz
So using the equation
f₁ = ( 1 / 2 π ) * √K / m₁
Solve to determine K' constant of spring
K = m * ( 4 π ² * f ² )
K = 1.0 kg * ( 4 π ² 1.0² Hz )
K = 39.4784176
So given 2.0 kg the frequency can be find using formula
f₂ = ( 1 / 2 π ) * √K / m₂
f₂ = ( 1 / 2 π ) * √39.4784176 / 2.0 kg
f₂ = 0.707 Hz
Answer:
1.35 m
Explanation:
Taking down to be positive, given:
Δx = Δy / tan 30.0º
v₀ₓ = 4.50 m/s
v₀ᵧ = 0 m/s
aₓ = 0 m/s²
aᵧ = 10 m/s²
Find: Δy
First, find the time it takes to land in terms of Δy.
Δy = v₀ t + ½ at²
Δy = (0 m/s) t + ½ (10 m/s) t²
Δy = 5t²
Next, find Δx in terms of t.
Δx = v₀ t + ½ at²
Δx = (4.50 m/s) t + ½ (0 m/s) t²
Δx = 4.50t
Substitute:
Δy = 5 (Δx / 4.50)²
20.25 Δy = 5 (Δx)²
4.05 Δy = (Δx)²
4.05 Δy = (Δy / tan 30.0º)²
4.05 Δy = 3 (Δy)²
1.35 = Δy
The basketball was thrown from an initial height of 1.35 m.
Graph: desmos.com/calculator/ujuzdo9xpr
If each mL has 30 grams of the substance in it, then 60 mL have 1800 grams of mass in them. the weight of 1,800 grams of mass on Earth is (1.8 kg) x (9.8 m/s^2) = 17.6 newtons.
Answer:
Its 5 single cell batteries cannected in series
Explanation: