C. It is answered by observation and evidence.
Good scientific explanations are defined, measurable and controllable. They can be answered by an experiment.
The average speed would be 33.29m/s.The average speed equation is:

First you will need to solve for the distance you traveled in each scenario. So we can solve this by getting the product of speed and the time traveled.
Scenario 1:
Speed = 29m/s
Time = 120s
Distance = ?
Distance = (29m/s)(120s)
= 3,480m
Scenario 2
Speed = 35m/s
Time = 300s
Distance = ?
Distance = (35m/s)(300s)
= 10,500m
Now that you have the distance of both, you can solve for your average speed.
Answer:
V₀ = 5.47 m/s
Explanation:
The jumping motion of the Salmon can be modelled as the projectile motion. So, we use the formula for the range of projectile motion here:
R = V₀² Sin 2θ/g
where,
R = Range of Projectile = 3.04 m
θ = Launch Angle = 41.7°
V₀ = Minimum Launch Speed = ?
g = 9.81 m/s²
Therefore,
3.04 m = V₀² [Sin2(41.7°)]/(9.81 m/s²)
V₀² = 3.04 m/(0.10126 s²/m)
V₀ = √30.02 m²/s²
<u>V₀ = 5.47 m/s</u>
Answer:
B) Gets smaller
Explanation:
The difference of phase between current and voltage in a AC circuit is the phase angle and it depends on the value of Z ( circuit impedance)
Z = R + X where R is the resistive component and X the reactance component, which is due either to a presence of an inductor or a capacitor. In any case the total impedance depends on R the resistive, and the phase angle φ is:
tan⁻¹ φ = X/R
Have a look to a pure capactive circuit (we are talking about AC current) in this case current leads voltage by 90⁰. If we add a resistor in the circuit the current still will lead a voltage but in this condition the phase angle will be smaller,
If R increase, X/R decrease and tan⁻¹ φ also decrease
Complete Question
The complete question is shown on the first uploaded image
Answer:
The components of reaction at the fixed support are
,
,
,
,
, 
Explanation:
Looking at the diagram uploaded we see that there are two forces acting along the x-axis on the fixed support
These force are 400 N and
[ i.e the reactive force of 400 N ]
Hence the sum of forces along the x axis is mathematically represented as

=> 
Looking at the diagram uploaded we see that there are two forces acting along the y-axis on the fixed support
These force are 500 N and
[ i.e the force acting along the same direction with 500 N ]
Hence the sum of forces along the x axis is mathematically represented as

=> 
Looking at the diagram uploaded we see that there are two forces acting along the z-axis on the fixed support
These force are 600 N and
[ i.e the reactive force of 600 N ]
Hence the sum of forces along the x axis is mathematically represented as

=> 
Generally taking moment about A along the x-axis we have that

=> 
Generally taking moment about A along the y-axis we have that

=> 
Generally taking moment about A along the z-axis we have that

=> 