To develop this problem we will start from the definition of entropy as a function of total heat, temperature. This definition is mathematically described as

Here,
Q = Total Heat
T = Temperature
The total change of entropy from a cold object to a hot object is given by the relationship,

From this relationship we can realize that the change in entropy by the second law of thermodynamics will be positive. Therefore the temperature in the hot body will be higher than that of the cold body, this implies that this term will be smaller than the first, and in other words it would imply that the magnitude of the entropy 'of the hot body' will always be less than the entropy 'cold body'
Change in entropy
is smaller than 
Therefore the correct answer is C. Will always have a smaller magnitude than the change in entropy of the cold object
Answer:
to have an accurate measure
Explanation:
Explanation:
It is given that,
Mass of the woman, m₁ = 52 kg
Angular velocity, 
Mass of disk, m₂ = 118 kg
Radius of the disk, r = 3.9 m
The moment of inertia of woman which is standing at the rim of a large disk is :


I₁ = 790.92 kg-m²
The moment of inertia of of the disk about an axis through its center is given by :


I₂ =897.39 kg-m²
Total moment of inertia of the system is given by :


I = 1688.31 kg-m²
The angular momentum of the system is :



So, the total angular momentum of the system is 4980.5 kg-m²/s. Hence, this is the required solution.
Answer:

Explanation:
The pulley is modelled by the Newton's Laws, whose equation of equilibrium is:

Given that tension is equal to the weight of the bucket, the angular acceleration experimented by the pulley is:





Most waves approach the shore at an angle. However, they bend to be nearly parallel to the shore as they approach it because when a wave reaches a beach or coastline, it releases a burst of energy that generates a current, which runs parallel to the shoreline.
- Most waves approach shore at an angle. As each one arrives, it pushes water along the shore, creating what is known as a longshore current within the surf zone.
- Waves approach the coast at an angle because of the direction of prevailing wind.
- The part of the wave in shallow water slows down, while the part of the wave in deeper water moves at the same speed.
- Thus when wave reaches a beach or coastline, it releases a burst of energy that generates a current, which runs parallel to the shoreline.
To know more about waves visit:
brainly.com/question/27831266
#SPJ4