To stop instantly, you would need infinite deceleration. This in turn, requires infinite force, as demonstrable with this equation:F=ma<span>So when you hit a wall, you do not instantly stop (e.g. the trunk of the car will still move because the car is getting crushed). In a case of a change in momentum, </span><span><span>m<span>v⃗ </span></span><span>m<span>v→</span></span></span>, we can use the following equation to calculate force:F=p/h<span>However, because the force is nowhere close to infinity, time will never tend to zero either, which means that you cannot come to an instantaneous stop.</span>
The friction is 2.5N. The Net force is 10 N - 2.5 N .= 7.5 N.
acceleration = 7.5 / 5 = 1.5 m/s^2
Answer:
The acceleration is a = 2.75 [m/s^2]
Explanation:
In order to solve this problem we must use kinematics equations.

where:
Vf = final velocity = 13 [m/s]
Vi = initial velocity = 2 [m/s]
a = acceleration [m/s^2]
t = time = 4 [s]
Now replacing:
13 = 2 + (4*a)
(13 - 2) = 4*a
a = 2.75 [m/s^2]