Answer:
0.000003782 m
0.000001891 m
0.000001197125 m
Explanation:
= Wavelength = 248 nm
D = Diameter of beam = 1 cm
f = Focal length = 0.625 cm
The angle is given by

The width is given by

The required width is 0.000003782 m
Minimum resolvable line separation is given by

The minimum resolvable line separation between adjacent lines is 0.000001891 m
when 

The new minimum resolvable line separation between adjacent lines is

The yellow light indicates that you have to slow down and slowly come to a stop. You slow your car until light completely turns red, then you stop at red and wait for the light
Answer:
The magnitude will be "353.5 N". A further solution is given below.
Explanation:
The given values is:
F = 500 N
According to the question,
In ΔABC,
⇒ 
⇒ 
then,
⇒ 
⇒ 
Now,
The corresponding angle will be:
⇒ 
⇒ 
⇒ 
Aspect of F across the AC arm will be:
= 
On putting the values of F, we get
= 
= 
Component F along the AC (in magnitude) will be:
= 
= 
= 
49 J is the total kinetic energy. If a bowling ball of mass 7.3 kg and radius 9.6 cm rolls without slipping down a lane at 3.1 m/s. Kinetic energy is the energy an bowling ball has because of its motion.
Given: m = 7.3 Kg ; r = 9.4 cm = 0.094 m ; v = 3.1 m
Now total kinetic energy in this case is given by KE = Kinetic energy due to rotation + Kinetic energy due to translation
i,e KE = 1/2*m*v2 + 1/2*I*ω2 where I is the moment of inertia of the bowling ball about it's center and ω is the angular velocity
Now for pure rotation (without slipping) v = rω
also for the ball (solid sphere) I = 2/5*m*r2
Hence our kinetic energy becomes
KE = 1/2*m*v2 + 1/5*m*v2 = 7/10*m*v2
so KE = 0.7*7.3*(3.1)2 = 49.10 J = 49 J
Learn more about kinetic energy here
brainly.com/question/12669551
#SPJ4