Answer:
Kp = 7.4727
Explanation:
Let's write the balanced equilibrium reaction:
2NH₃ <-------> N₂ + 3H₂ Kp = ??
Now, if we want to calculate the Kp, we need to write an ICE chart with this reaction, which is the following:
2NH₃ <-------> N₂ + 3H₂
I. 4,5 0 0
C. -2x +x +3x
E. 4,5-2x x 3x
According to this chart, the Kp expression should be:
Kp = (PH₂)³ * (PN₂) / (PNH₃)² (1)
The value of x, we already know it because the problem states that the amount of nitrogen gas is 1.1 atm, so replacing this value into (1) we have:
Kp = (3*1.1)³ * (1.1) / (4.5 - (2 * 1.1))²
Kp = 39.5307 / 5.29
<h2>
Kp = 7.4727</h2>
Hope this helps
Answer: The final temperature is equal to
45 Celsius
Explanation:
Explanation:
We have the amount of energy gain
Q
=
m
⋅
c
⋅
Δ
T
=
m
c
Δ
t
where
c
=
4.184
J
/
g
.
C
is the specific heat of water,
m
is the mass of water
⇒
840
=
10
x
4.184
⋅
(
t
−
25
)
t
=
840
10
x
4.184
+
25
=
45
i.e.
45
∘
C
Density can be calculated using the following rule:
density = mass / volume
Therefore,
volume = mass / density
For diamond:
we have mass = 0.5 grams and density = 3.51 g / cm^3
Substituting in the rule, we can calculate the volume of diamond as follows:
volume = 0.5 / 3.51 = 0.14245 cm^3
For graphite:
we have mass = 0.5 grams and density = 2.25 g / cm^3
Substituting in the rule, we can calculate the volume of graphite as follows:
volume = 0.5 / 2.25 = 0.2223 cm^3
Answer:
5727 years or 5730 (rounded to match 3 sig figs) whichever one your teacher prefers
Explanation:
First Order decay has a half life formula of Half Life = Ln (2) / k = 0.693/K
Half-life = 0.693/k = 0.693/1.21 x10-4 = 5727 years or 5730 (rounded to match 3 sig figs)
This should be correct because if you google the half-life of 14 C it is ~ 5700 years