4/6
= (4/2) / (6/2) (divide both numerator and denominator by 2)
= 2/3
The final answer is 2/3~
For this, we use simultaneous equations. Let George's page be g, Charlie's be c and Bill's page be b.
First, <span>George's page contains twice as many type words as Bill's.
Thus, g = 2b.
</span><span>Second, Bill's page contains 50 fewer words than Charlie's page.
Thus, b = c - 50.
</span>If each person can type 60 words per minute, after one minute (i.e. when 60 more words have been typed) <span>the difference between twice the number of words on bills page and the number of words on Charlie's page is 210.
We can express that as 2b - c = 210.
Now we need to find b, since it represents Bill's page.
We can substitute b for (c - 50) since b = c - 50, into the equation 2b - c = 210. This makes it 2(c - 50) - c = 210.
We can expand this to 2c - 100 - c = 210.
We can simplify this to c - 100 = 210.
Add 100 to both sides.
c - 100 + 100 = 210 + 100
Then simplify: c = 210 + 100 = 310.
Now that we know c, we can use the first equation to find b.
b = c - 50 = 310 - 50 = 260.
260 is your answer. I don't know where George comes into it. Maybe it's a red herring!</span>
Answer:
a) Average velocity at 0.1 s is 696 ft/s.
b) Average velocity at 0.01 s is 7536 ft/s.
c) Average velocity at 0.001 s is 75936 ft/s.
Step-by-step explanation:
Given : If a ball is thrown straight up into the air with an initial velocity of 70 ft/s, its height in feet after t seconds is given by
.
To find : The average velocity for the time period beginning when t = 2 and lasting. a. 0.1 s.
, b. 0.01 s.
, c. 0.001 s.
Solution :
a) The average velocity for the time period beginning when t = 2 and lasting 0.1 s.





b) The average velocity for the time period beginning when t = 2 and lasting 0.01 s.





c) The average velocity for the time period beginning when t = 2 and lasting 0.001 s.




Answer:
5 - 3i.
Step-by-step explanation:
2 + 4i + 3 - 7i Bring like terms together:
= 2 + 3 + 4i - 71
= 5 - 3i.